《2021-2022学年最新沪科版八年级下册数学期末专项测评试题-卷(Ⅱ)(含答案解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年最新沪科版八年级下册数学期末专项测评试题-卷(Ⅱ)(含答案解析).docx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 沪科版八年级下册数学期末专项测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、为了绿化荒山,某地区政府提出了2028年荒山的森林覆盖率达到45
2、%的目标已知2019年该地区森林覆盖率已达到34%,若要在2021年使该地区荒山的森林覆盖率达到38%设从2019年起该地区荒山的森林覆盖率的年平均增长率为,则可列方程为( )ABCD2、为了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间条形统计图如图所示,则所调查学生睡眠时间的众数,中位数分别为()A7h,7hB8h,7.5hC7h,7.5hD8h,8h3、若是关于x的一元二次方程的一个根,则m的值为( )AB0CD14、以下列各组数为边长的三角形中,不能构成直角三角形的一组是( )A6、8、10B5、12、13C8、15、17D4、5、65、如图,五根小木棒,其长度分
3、别为5,9,12,13,15,现将它们摆成两个直角三角形,其中正确的是( )ABCD6、用配方法解方程时,原方程应变形为( )ABCD7、下列四组数中,不能构成直角三角形边长的一组数是( )A0.3,0.4,0.5B1,C14,16,20D6,8,108、一元二次方程的二次项系数是( )A0B1C-2D39、下列方程中,没有实数根的是( )ABCD10、下面各命题都成立,那么逆命题成立的是( )A邻补角互补 线 封 密 内 号学级年名姓 线 封 密 外 B全等三角形的面积相等C如果两个实数相等,那么它们的平方相等D两组对角分别相等的四边形是平行四边形第卷(非选择题 70分)二、填空题(5小题,
4、每小题4分,共计20分)1、已知三角形的三边分别是6,8,10,则最长边上的高等于_2、如图,和都是等边三角形,连接AD,BD,BE,下列四个结论中:;,正确的是_(填写所有正确结论的序号)3、设a,b,c,d是四个不同的实数,如果a,b是方程的两根,c,d是方程的两根,那么的值为_4、为了解某学校“书香校园”的建设情况,这个学校共有300名学生,检查组在该校随机抽取50名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数直方图(每小组的时间值包含最小值,不包含最大值),若要根据图中信息绘制每组人数的扇形统计图,一周课外阅读时间不少于6小时的这部分扇形的圆心角是_5、如
5、图,在长方形ABCD中,点E是BC边上一点,连接AE,把沿AE折叠,使点B落在点处当为直角三角形时,BE的长为_三、解答题(5小题,每小题10分,共计50分)1、正方形ABCD边长为6,点E在边AB上(点E与点A、B不重合),点F、G分别在边BC、AD上(点F与点B、C不重合),直线FG与DE相交于点H(1)如图1,若GHD=90,求证:GF=DE;(2)在(1)的条件下,平移直线FG,使点G与点A重合,如图2联结DF、EF设CF=x,DEF的面积为y,用含x的代数式表示y;(3)如图3,若GHD=45,且BE=2AE,求FG的长 线 封 密 内 号学级年名姓 线 封 密 外 2、在第二十二届
6、深圳读书月来临之际,为了解某学校八年级学生每天平均课外阅读时间的情况,随机抽查了该学校八年级部分同学,对其每天平均课外阅读时间进行统计,并绘制了如图所示的不完整的统计图请根据相关信息,解答下列问题:(1)该校抽查八年级学生的人数为 ,图中的值为 ;(2)请将条形统计图补充完整;(3)求被抽查的学生每天平均课外阅读时间的众数、中位数和平均数;(4)根据统计的样本数据,估计该校八年级400名学生中,每天平均课外阅读时间为2小时的学生有多少人?3、计算:()24、计算:5、如图,利用一面墙(墙长25米),用总长度49米的栅栏(图中实线部分)围成一个矩形围栏,且中间共留两个1米的小门,设栅栏长为x米(
7、1)若矩形围栏面积为210平方米,求栅栏的长;(2)矩形围栏面积是否有可能达到240平方米?若有可能,求出相应x的值,若不可能,请说明理由-参考答案-一、单选题1、C【分析】增长率问题,一般用增长后的量=增长前的量(1+增长率),参照本题,如果设年平均增长率为x,根据“2019年我市森林覆盖率已达到34%,要在2021年使全市森林覆盖率达到38%”,可列出方程【详解】解:由题意可得:2020年,全市森林覆盖率为:34%(1+x);2021年,全市森林覆盖率为:34%(1+x)(1+x)=34%(1+x)2;所以可列方程为34%(1+x)2=38%;故选C【点睛】本题考查求平均变化率的方法若设变
8、化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1x)2=b2、C【分析】权数最大的数据是众数,第25个,26个数据的平均数是中位数,计算即可【详解】7的权数是19,最大,所调查学生睡眠时间的众数是7小时, 线 封 密 内 号学级年名姓 线 封 密 外 根据条形图,得第25个数据是7小时,第26个数据是8小时,所调查学生睡眠时间的中位数是=7.5小时,故选C【点睛】本题考查了条形统计图,中位数即数据排序后,中间的数或中间两位数的平均数;众数即数据中出现次数最多的数据,正确计算中位数是解题的关键3、C【分析】将代入方程得到关于的方程,然后解方程即可【详解】解:将代入
9、方程得:,解得:m=故选:C【点睛】本题考查了一元二次方程根的定义,将已知方程的一个根代入方程得到新的方程是解答本题关键4、D【分析】根据题意由勾股定理的逆定理,进而验证两小边的平方和等于最长边的平方进行判断即可【详解】解:A、62+82102,故是直角三角形,故此选项不符合题意;B、52+122132,故是直角三角形,故此选项不符合题意;C、82+152172,故是直角三角形,故此选项不符合题意;D、42+5262,故不是直角三角形,故此选项符合题意故选:D【点睛】本题考查勾股定理的逆定理注意掌握判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可5、C【分析
10、】根据勾股定理的逆定理逐一判断即可【详解】A、对于ABD,由于,则此三角形不是直角三角形,同理ADC也不是直角三角形,故不合题意;B、对于ABC,由于,则此三角形不是直角三角形,同理ADC也不是直角三角形,故不合题意;C、对于ABC,由于,则此三角形是直角三角形,同理BDC也是直角三角形,故符合题意;D、对于ABC,由于,则此三角形不是直角三角形,同理BDC也不是直角三角形,故不合题意故选:C【点睛】本题考查了勾股定理的逆定理,其内容是:两条短边的平方和等于长边的平方,则此三角形是直角三角形,为便于利用平方差公式计算,常常计算两条长边的平方差即两条长边的和与这两条长边的差的积,若等于最短边的平
11、方,则此三角形是直角三角形6、B【分析】根据配方法解一元二次方程的步骤首先把常数项移到右边,方程两边同时加上一次项系数一半的平方 线 封 密 内 号学级年名姓 线 封 密 外 配成完全平方公式【详解】解:移项得:方程两边同时加上一次项系数一半的平方得:配方得:故选:B【点睛】此题考查了配方法解一元二次方程的步骤,解题的关键是熟练掌握配方法解一元二次方程的步骤配方法的步骤:配方法的一般步骤为:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方7、C【分析】先分别求出两小边的平方和和最长边的平方,再看看是否相等即可【详解】解:A0.32+0.42=
12、0.52,以0.3,0.4,0.5为边能组成直角三角形,故本选项不符合题意;B12+()2=()2,以1,为边能组成直角三角形,故本选项不符合题意;C142+162202,以14,16,20为边不能组成直角三角形,故本选项符合题意;D62+82=102,以6,8,10为边能组成直角三角形,故本选项不符合题意;故选:C【点睛】本题考查了勾股定理的逆定理,注意:如果一个三角形的两条边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形8、B【分析】直接根据一元二次方程的一般形式求得二次项系数即可【详解】解:,即二次项系数为1故选B【点睛】本题考查了一元二次方程的一般形式,掌握一元二次方程的
13、一般形式是解题的关键一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a0)特别要注意a0的条件这是在做题过程中容易忽视的知识点在一般形式中ax2叫二次项,bx叫一次项,c是常数项其中a,b,c分别叫二次项系数,一次项系数,常数项9、D【分析】利用一元二次方程根的判别式,即可求解【详解】解:A、 ,所以方程有两个不相等的实数根,故本选项不符合题意;B、,所以方程有两个不相等的实数根,故本选项不符合题意; 线 封 密 内 号学级年名姓 线 封 密 外 C、,所以方程有两个相等的实数根,故本选项不符合题意;D、,所以方程没有的实数根,故本选项符合题意;故选:D【点睛】本题主要考查了
14、一元二次方程根的判别式,熟练掌握二次函数 ,当 时,方程有两个不相等的实数根;当 时,方程有两个相等的实数根;当 时,方程没有实数根是解题的关键10、D【分析】逐个写出逆命题,再进行判断即可【详解】A选项,逆命题:互补的两个角是邻补角互补的两个角顶点不一定重合,该逆命题不成立,故A选项错误;B选项,逆命题:面积相等的两个三角形全等底为4高为6的等腰三角形和底为6高为4的等腰三角形面积相等,但这两个等腰三角形不全等,该逆命题不成立,故B选项错误;C选项,逆命题:如果两个实数的平方相等,那么这两个实数相等这两个实数也有可能互为相反数,该逆命题不成立,故C选项错误;D选项,逆命题:平行四边形是两组对
15、角分别相等的四边形这是平行四边形的性质,该逆命题成立,故D选项正确故答案选:D【点睛】本题考查判断命题的真假,写一个命题的逆命题把一个命题的条件和结论互换后的新命题就是这个命题的逆命题二、填空题1、【分析】根据勾股定理的逆定理,得这个三角形是直角三角形;根据直角三角形的面积计算,即可得到答案【详解】三角形的三边分别是6,8,10,又 这个三角形是直角三角形最长边上的高 最长边上的高为: 故答案为:【点睛】本题考查了勾股定理逆定理的知识;解题的关键是熟练掌握勾股定理的逆定理,从而完成求解2、【分析】利用等边三角形的性质即可证明出;在四边形中,根据,可得,即;先求出,得,通过等量代换即可;根据即可
16、判断【详解】解:和都是等边三角形, 线 封 密 内 号学级年名姓 线 封 密 外 ,故正确;,在四边形中,故错误;,故正确;,不一定等于,不一定成立,故错误;故答案是:【点睛】本题考查了等边三角形的性质,三角形全等的判定定理、勾股定理、多边形内角和,解题的关键掌握等边三角形的性质,通过等量代换的思想进行求解3、【分析】由根与系数的关系得,两式相加得,根据一元二次方程根的定义可得,可得,同理可得,两式相减即可得,根据,求得,进而可得【详解】解:由根与系数的关系得,两式相加得 因为是方程的根,所以,又,所以 同理可得 -得因为,所以,所以【点睛】本题考查了一元二次方程根与系数的关系,一元二次方程根
17、的定义,根据等式的性质变形是解题的关键4、43.2【分析】先求出阅读时间不少于6小时的人数,再根据公式计算即可【详解】解:阅读时间不少于6小时的频数为50-7-13-24=6,一周课外阅读时间不少于6小时的这部分扇形的圆心角是43.2, 线 封 密 内 号学级年名姓 线 封 密 外 故答案为:43.2【点睛】此题考查了求部分的圆心角度数,正确计算某组的频数及掌握圆心角度数的计算公式是解题的关键5、或3【分析】分两种情形:如图1中,当,共线时,如图2中,当点落在上时,分别求解即可【详解】解:如图1中,当,共线时,四边形是矩形,设,则,在中,如图2中,当点落在上时,此时四边形是正方形,综上所述,满
18、足条件的的值为或3故答案是:或3【点睛】本题考查了矩形的性质,折叠的性质,勾股定理,解题的关键是学会用分类讨论的思想思考问题三、解答题1、(1)见解析(2)y=x2-3x+18(0x6)(3)【分析】(1)如图1中,作CMFG交AD于M,CM交DE于点K只要证明四边形CMGF是平行四边形,ADEDCM即可解决问题;(2)根据SDEF=S梯形EBCD-SDCF-SEFB计算即可解决问题;(3)如图3中,将ADE绕点D逆时针旋转90得到DCM作DNGF交BC于点N,连接EN由 线 封 密 内 号学级年名姓 线 封 密 外 NDENDM(SAS),推出EN=NM,由AB=6,BE=2AE,推出AE=
19、2,BE=4,设CN=x,则BN=6-x,EN=MN=2+x,在RtENB中,根据EN2=EB2+BN2,构建方程求出x,再在RtDCN中,求出DN即可解决问题(1)证明:如图1中,作CMFG交AD于M,CM交DE于点K四边形ABCD是正方形,AD=CD,ADBC,A=ADC=90,CMFG,DEFG,四边形CMGF是平行四边形,CMDE,CM=FG,CKD=90CDE+DCM=90,ADE+CDE=90,ADE=DCM,ADEDCM(ASA),CM=DE,DE=FG(2)如图2中,AF=DE,AD=AB,DAE=B=90,ADEBAF(SAS),AE=BF,AB=BC,BE=CF=x,y=S
20、DEF=S梯形EBCD-SDCF-SEFB=(x+6)6-6x-x(6-x)=3x+18-3x+x2-3x=x2-3x+18(0x6)(3)如图3中,将ADE绕点D逆时针旋转90得到DCM作DNGF交BC于点N,连接EN 线 封 密 内 号学级年名姓 线 封 密 外 则四边形DGFN是平行四边形,EDN=GHD=45,ADC=90,NDC+ADE=NDC+CDM=45,NDE=NDM,DN=DN,DE=DM,NDENDM(SAS),EN=NM,AB=6,BE=2AE,AE=2,BE=4,设CN=x,则BN=6-x,EN=MN=2+x,在RtENB中,EN2=EB2+BN2,(x+2)2=(6-
21、x)2+42,x=3,在RtDCN中,DN=,FG=DN=【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,勾股定理,平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题2、(1)100,18;(2)见解析;(3)(4)72人【分析】(1)根据每天平均课外阅读时间为1小时的占30%,共30人,即可求得总人数;(2)根据总数减去其他三项即可求得每天平均课外阅读时间为1.5小时的人数进而补充条形统计图;(3)根据条形统计图可知阅读时间为1.5小时的人数最多,故学生每天平均课外阅读时间的众数为1.5
22、,根据第50和51个都落在阅读时间为1.5小时的范围内,即可求得中位数为1.5,根据求平均数的方法,求得100个学生阅读时间的平均数(4)根据扇形统计图可知,每天平均课外阅读时间为2小时的比例为,400乘以18%即可求得【详解】(1)总人数为:(人);故答案为:(2)每天平均课外阅读时间为1.5小时的人数为:(人)补充条形统计图如下:(3)根据条形统计图可知抽查的学生每天平均课外阅读时间的众数为1.5中位数为1.5,平均数为;(4)(人)估计该校八年级400名学生中,每天平均课外阅读时间为2小时的学生有人【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了条形统计图与扇形统计图信
23、息关联,求众数、中位数和平均数,样本估算总体,从统计图中获取信息是解题的关键3、【分析】先根据完全平方公式计算以及化简二次根式,再计算二次根式的乘除混合运算,最后合并同类二次项即可求解;【详解】解:,=,=,=【点睛】本题主要考查了二次根式的混合运算和完全平方公式,关键是熟练掌握计算法则正确进行计算4、【分析】由可得再利用进行化简即可.【详解】解: 【点睛】本题考查的是二次根式的化简,二次根式的加减运算,注意结合化简时被开方数中字母的取值范围是解题的关键.5、(1)栅栏的长为10米;(2)矩形围栏面积不可能达到240平方米【分析】(1)先表示出AB的长,再根据矩形围栏ABCD面积为210平方米
24、,即可得出关于x的一元二次方程,解之取其较大值即可得出结论;(2)根据矩形围栏ABCD面积为240平方米,即可得出关于x的一元二次方程,由根的判别式=-310,可得出该方程没有实数根,进而可得出矩形围栏ABCD面积不可能达到240平方米【详解】解:(1)依题意,得:,整理,得:,解得:当时,不合题意,舍去,当时,符合题意,答:栅栏的长为10米;(2)不可能,理由如下:依题意,得:,整理得:, 线 封 密 内 号学级年名姓 线 封 密 外 ,方程没有实数根,矩形围栏面积不可能达到240平方米【点睛】本题考查了一元二次方程的应用、列代数式以及根的判别式,解题的关键是:(1)根据各数量之间的关系,用含x的代数式表示出AB的长;(2)找准等量关系,正确列出一元二次方程;(3)牢记“当0时,方程无实数根”