《2021-2022学年度强化训练京改版八年级数学下册第十七章方差与频数分布单元测试试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度强化训练京改版八年级数学下册第十七章方差与频数分布单元测试试卷(含答案详解).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十七章方差与频数分布单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某班将安全知识竞赛成绩整理后绘制成直方图,图中从左至右前四组的百分比分别是4%、12%、40%、28%,第
2、五组的频数是8,下列结论错误的是( )A90分以上的学生有14名B该班有50名同学参赛C成绩在7080分的人数最多D第五组的百分比为16%2、某班在体育活动中,测试了十位学生的“一分钟跳绳”成绩,得到十个各不相同的数据.在统计时,出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是( )A平均数B中位数C方差D众数3、了解时事新闻,关心国家重大事件是每个中学生应具备的素养,在学校举行的新闻事件比赛中,知道“祝融号”成功到达火星的同学有40人,频率为0.8,则参加比赛的同学共有()A32人B40人C48人D50人4、已知一组数据1,2,0,1,2,那么这组数据的方差是()A10B4C2D
3、0.25、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是90分,方差分别是S甲25,S乙220,S丙223,S丁232,则这四名学生的数学成绩最稳定的是()A甲B乙C丙D丁6、如图是某校九年级部分男生做俯卧撑的成绩(次数)进行整理后,分成五组,画出的频率分布直方图,已知从左到右前4个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数为25,若合格成绩为20,那么此次统计的样本容量和本次测试的合格率分别是( )A100,55%B100,80%C75,55%D75,80%7、一组数据:1,3,3,3,5,若去掉一个数据3,则下列统计量中发生变化的是( )A众数B中位数C平
4、均数D方差8、甲、乙、丙、丁四位同学五次数学测验成绩统计如表如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选( )甲乙丙丁平均数90959590方差32324449A甲B乙C丙D丁9、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是110分,方差分别是S甲26,S乙224,S丙225.5,S丁236,则这四名学生的数学成绩最稳定的是()A甲B乙C丙D丁10、如表是某次射击比赛中10名选手的射击成绩(环):射击成绩(环)678910人数(人)12421关于这10名选手的射击环数,下列说法不正确的是( )A众数是8B中位数是5C平均数是8D方差是1.2第卷(非选择
5、题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个样本的方差,则样本容量是_,样本平均数是_2、某校八年级(1)班甲、乙两名同学在10次射箭成绩情况如下表所示,体育老师根据这10次成绩,会选择_同学参加比赛(填“甲”或“乙”)平均数(环)众数(环)中位数(环)方差(环)甲8.7991.5乙8.71093.23、新冠疫情期间,小李同学连续两周居家健康检测,如下图是小李记录的体温情况折线统计图,记第一周体温的方差为,第二周体温的方差为,试判断两者之间的大小关系_(用“”、“=”、“【点睛】本题考查根据数据的波动程度判断方差的大小掌握数据波动程度和方差的关系是解答本题的关键三、解答题1
6、、(1)96人;(2)250人;(3)B小区垃圾分类的普及工作更出色,见解析【分析】(1)用整个B小区总人数乘以样本中“非常了解”的人数的百分比,即可估计整个B小区达到“非常了解”的居民人数;(2)用整个A小区总人数乘以样本中“比较了解”和“非常了解”的人数的频率,即可估计整个A小区普及到位的居民人数;(3)计算出两个小区样本“不了解”的人数的百分比,用样本估计总体【详解】解:(1)估计整个小区达到“非常了解”的居民人数有:(人); (2)整个小区普及到位的居民人数有:(人);(3)整个小区“不了解”的:;整个小区“不了解”的44%因为44%50%所以小区垃圾分类的普及工作更出色【点睛】本题考
7、查了用样本估计总体,调查收集数据的过程与方法,解决本题的关键是掌握用样本估计总体2、(1)100;(2)见解析;(3)600【分析】(1)根据爱好运动人数的百分比,以及运动人数即可求出共调查的人数;(2)根据两幅统计图即可求出阅读的人数以及上网的人数,从而可补全图形;(3)利用样本估计总体即可估计爱好运动的学生人数【详解】解:(1)爱好运动的人数为,所占百分比为共调查人数为:,故答案为:;爱好上网的人数所占百分比为爱好上网人数为:,爱好阅读人数为:,补全条形统计图,如图所示,(3)爱好运动的学生人数所占的百分比为,估计爱好运用的学生人数为:,故答案为:;【点睛】本题考查统计的基本知识,样本估计
8、总体,解题的关键是正确利用两幅统计图的信息3、(1)50(人);(2)10(人),图形见详解;(3)72(4)160(人)【分析】(1)利用成绩为良的人数以及百分比求出总人数即可(2)求出成绩为中的人数,画出条形图即可(3)根据圆心角360百分比即可(4)先求出抽查中上线的百分比,用样本的百分比含量估计总体的数量解决问题即可【详解】解:(1)总人数2244%50(人)(2)中的人数501022810(人),条形图如图所示:(3)表示成绩类别为“优”的扇形所对应的圆心角的度数36072,故答案为72(4)抽查中成绩类别“优”与“中”的划成“上线生”有10+10=20(人),抽查中成绩类别“优”与
9、“中”的划成“上线生”百分比为:学校八年级共有400人参加了这次数学考试,估计该校八年级优秀人数为40040%160(人)【点睛】本题考查条形统计图和扇形统计图信息获取与处理,样本容量,扇形圆心角,补画条形统计图,用样本的百分比含量估计总体中的数量,解题的关键是掌握从条形统计图和扇形统计图中信息读取的能力4、(1)400,100,15;(2)60万人;(3)见解析【分析】(1)根据A的人数除以BA所占的百分比,求得总人数,总人数乘以B的百分比可得m,总人数减去其余各组人数之和可得n,用E组人数除以总人数可得答案;(2)根据全市总人数乘以D类所占比例,可得答案;(3)根据以上图表提出合理倡议均可
10、【详解】解:(1)本次调查的总人数为8020%400(人),则B组人数m40010%40(人),C组人数n400(80+40+120+60)100(人),扇形统计图中E组所占的百分比为(60400)100%15%;(2)20060(万人),答:估计其中持D组“观点”的市民人数有60万人;(3)由上面的统计可知,造成“雾霾”的主要原因是“工厂造成的污染”和“汽车尾气排放”倡议关停重污染企业,加大对工厂排污的监管和处罚;倡议大家尽量乘坐公共交通工具出行,减少汽车尾气的排放【点睛】本题主要考查了扇形统计图,统计表,能从图形中获取准确信息是解题的关键5、(1)50;(2)4,32;(3)21600【分析】(1)由B等级的人数及其所占百分比即可求出被调查的总人数;(2)用总人数减去B、C、D的人数即可得出a的值,用C等级人数除以被调查总人数即可得出其对应百分比;(3)用总人数乘以样本中C、D人数所占比例即可【详解】解:(1)本次被抽取的教职工共有1020%50(名),故答案为:50;(2)a50(101620)4,扇形统计图中“C”部分所占百分比为100%32%,故答案为:4,32;(3)志愿服务时间多于60小时的教职工大约有3000021600(人)【点睛】此题主要考查了扇形统计图、频数(率)分布表,以及样本估计总体,关键是正确从扇形统计图和表格中得到所用信息