2021-2022学年度强化训练京改版八年级数学下册第十七章方差与频数分布专项训练试卷(含答案详解).docx

上传人:知****量 文档编号:28147547 上传时间:2022-07-26 格式:DOCX 页数:21 大小:336.03KB
返回 下载 相关 举报
2021-2022学年度强化训练京改版八年级数学下册第十七章方差与频数分布专项训练试卷(含答案详解).docx_第1页
第1页 / 共21页
2021-2022学年度强化训练京改版八年级数学下册第十七章方差与频数分布专项训练试卷(含答案详解).docx_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《2021-2022学年度强化训练京改版八年级数学下册第十七章方差与频数分布专项训练试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度强化训练京改版八年级数学下册第十七章方差与频数分布专项训练试卷(含答案详解).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、京改版八年级数学下册第十七章方差与频数分布专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为2,1.8,则下列说法正确的是( )A乙同

2、学的成绩更稳定B甲同学的成绩更稳定C甲、乙两位同学的成绩一样稳定D不能确定哪位同学的成绩更稳定2、某校随机抽查了10名学生的体育成绩,得到的结果如表:成绩(分)4647484950人数(人)12322下列说法正确的是( )A这10名同学的体育成绩的方差为50B这10名同学的体育成绩的众数为50分C这10名同学的体育成绩的中位数为48分D这10名同学的体育成绩的平均数为48分3、为了了解某校七年级名学生的跳绳情况(秒跳绳的次数),随机对该年级名学生进行了调查,根据收集的数据绘制了如图所示的频数分布直方图(每组数据包括左端值不包括右端值,如最左边第一组的次数为:,则以下说法正确的是()A跳绳次数不

3、少于次的占B大多数学生跳绳次数在范围内C跳绳次数最多的是次D由样本可以估计全年级人中跳绳次数在次的大约有人4、甲、乙、丙、丁四名学生近4次数学测验成绩的平均数都是110分,方差分别是S甲26,S乙224,S丙225.5,S丁236,则这四名学生的数学成绩最稳定的是()A甲B乙C丙D丁5、为了解某社区居民的用电情况,随机对该社区15户居民进行调查,下表是这15户居民2020年4月份用电量的调查结果:关于这15户居民月用电量(单位:度),下列说法错误的是()居民(户)5334月用电量(度/户)30425051A平均数是43.25B众数是30C方差是82.4D中位数是426、已知一组数据有80个,其

4、中最大值为140,最小值为40,取组距为10,则可分成( )A11组B9组C8组D10组7、为了估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞n条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞a条鱼,如果在这a条鱼中有b条鱼是有记号的,那么估计鱼塘中鱼的条数为()ABCD8、某养羊场对200头生羊量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg及以上的生羊的只数是( )A180B140C120D1109、下列说法正确的是( )A“买中奖率为的奖券10张,中奖”是必然事件B“汽车累积行驶,出现一次故障”是随机事件C襄阳气象局预报说“明天

5、的降水概率为70%”,意味着襄阳明天一定下雨D若两组数据的平均数相同,则方差大的更稳定10、在一次投篮训练中,甲、乙、丙、丁四人各进行10次投篮,每人投篮成绩的平均数都是8,方差分别为S甲20.24,S乙20.42,S丙20.56,S丁20.75,成绩最稳定的是( )A甲B乙C丙D丁第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一组数据:2021,2021,2021,2021,2021,2021的方差是_2、一组数据7,2,1,3的极差为_3、一组数据5,8,x,10,4的平均数为2x,则x_,这组数据的方差为_4、从全市份数学试卷中随机抽取份试卷,其中有份成绩合格,

6、估计全市成绩合格的人数约为_人5、某校学生自主建立了一个学习用品义卖社团,已知八年级200名学生义卖所得金额的频数分布直方图如图所示,那么4050元这个小组的组频率是_三、解答题(5小题,每小题10分,共计50分)1、为引导学生知史爱党、知史爱国,某中学组织全校学生进行“党史知识”竞赛,该校德育处随机抽取部分学生的竞赛成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格,并绘制成两幅不完整的统计图根据以上信息,解答下列问题:(1)德育处一共随机抽取了_名学生的竞赛成绩;在扇形统计图中,表示“一般”的扇形圆心角的度数为_;(2)将条形统计图补充完整;(3)该校共有1400名学生,估计该校大

7、约有多少名学生在这次竞赛中成绩优秀?2、为了解2路公共汽车的运营情况,公交部门统计了某天2路公共汽车每个运行班次的载客量,得到如表各项数据载客量/人组中值频数(班次)1x2111221x41a841x乙同学成绩的方差1.8,且平均成绩一样乙同学的成绩更稳定故选A【点睛】本题主要考查了方差的意义,方差用来计算每一个变量(观察值)与总体均数之间的差异,其作用是反映数据的稳定性,方差越小越稳定,越大越不稳定2、C【分析】根据众数、中位数、平均数及方差的定义列式计算即可【详解】这组数据的平均数为(46+472+483+492+502)48.2,故D选项错误,这组数据的方差为(4648.2)2+2(47

8、48.2)2+3(4848.2)2+2(4948.2)2+2(5048.2)21.56,故A选项错误,这组数据中,48出现的次数最多,这组数据的众数是48,故B选项错误,这组数据中间的两个数据为48、48,这组数据的中位数为48,故C选项正确,故选:C【点睛】本题考查众数、中位数、平均数及方差,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数;一组数据中,出现次数最多的数就叫这组数据的众数;熟练掌握定义及公式是解题关键3、A【分析】根据频数发布直方图,跳绳次数不少于100次的人数相加除总人数后再乘即可得;由频数分布直方图可知,大多数学生跳绳次数在范围内

9、;因为每组数据包括左端值不包括右端值,所以跳绳次数最多的不是次;由样本可以估计全年级人中跳绳次数在次的大约有(人),进行判断即可得【详解】A、跳绳次数不少于次的占,选项说法正确,符合题意;B、由频数分布直方图可知,大多数学生跳绳次数在范围内,选项说法错误,不符合题意;C、每组数据包括左端值不包括右端值,故跳绳次数最多的不是次,选项说法错误,不符合题意;D、由样本可以估计全年级人中跳绳次数在次的大约有(人),选项说法错误,不符合题意;故选A【点睛】本题考查了频数(率)分布直方图,解题的关键是能够根据频数(率)分布直方图所给的信息进行求解4、A【分析】根据方差的意义求解即可【详解】解:S甲26,S

10、乙224,S丙225.5,S丁236,S甲2S乙2S丙2S丁2,这四名学生的数学成绩最稳定的是甲,故选:A【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好掌握方差的意义是解题的关键5、A【分析】根据表格中的数据,求出平均数,中位数,众数,方差,即可做出判断【详解】解:15户居民2015年4月份用电量为30,30,30,30,30,42,42,42,50,50,50,51,51,51,51,平均数为(30+30+30+30+30+42+42+42+50+50+50+51+51+51+51)

11、42,中位数为42;众数为30,方差为 5(3042)2+3(4242)2+3(5042)2+4(5142)282.4故B、C、D正确故选:A【点睛】本题考查的是平均数,中位数,众数,方差,熟练掌握平均数,中位数,众数,方差的定义是解题关键6、A【分析】据组数=(最大值-最小值)组距计算即可得解,注意小数部分要进位【详解】解:由组数=(最大值-最小值)组距可得:组数=(140-40)10+1=11,故选择:A【点睛】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可7、A【分析】首先求出有记号的b条鱼在a条鱼中所占的比例,然后根据用样本中有记号的鱼所占

12、的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数【详解】解:打捞a条鱼,发现其中带标记的鱼有b条,有标记的鱼占,共有n条鱼做上标记,鱼塘中估计有n(条)故选:A【点睛】此题考查了用样本估计总体,关键是求出带标记的鱼占的百分比,运用了样本估计总体的思想8、B【分析】根据题意和直方图中的数据可以求得质量在77.5kg及以上的生猪数,本题得以解决【详解】解:由直方图可得,质量在77.5kg及以上的生猪:90+30+20=140(头),故选B【点睛】本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答9、B【分析】根据随机事件的概念、概率的意义和方差的意义分别对每一项进行分

13、析,即可得出答案【详解】解:A、“买中奖率为的奖券10张,中奖”是随机事件,故本选项错误;B、汽车累积行驶10000km,出现一次故障”是随机事件,故本选项正确;C、襄阳气象局预报说“明天的降水概率为70%”,意味着明天可能下雨,故本选项错误;D、若两组数据的平均数相同,则方差小的更稳定,故本选项错误;故选:B【点睛】此题考查了随机事件、概率的意义和方差的意义,正确理解概率的意义是解题的关键10、A【分析】根据方差的意义,即可求解【详解】解:S甲20.24,S乙20.42,S丙20.56,S丁20.75成绩最稳定的是甲故选A【点睛】此题考查了方差的意义,方差反应一组数据的波动情况,方差越小数据

14、越稳定,理解方差的意义是解题的关键二、填空题1、0【分析】根据方差的定义求解【详解】这一组数据都一样平均数为2021方差=故答案为:0【点睛】本题考查方差的计算方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定2、6【分析】根据极差的定义:一组数据中,最大值与最小值的差即为极差,进行解答即可【详解】解:一组数据7,2,1,3的极差为,故答案为:【点睛】本题考查了极差的定义,熟记定义是解本题的关键3、3 6.8 【分析】本题可用求平均数的公式解出x的值,在运用方

15、差的公式解出方差【详解】解:数据5,8,x,10,4的平均数是2x,58x10452x,解得x3,236,s2 (56)2(86)2(36)2(106)2(46)2(149164)6.8故答案为3,6.8【点睛】本题考查了算术平均数、方差的计算方法,熟练掌握该知识点是本题解题的关键4、8400【分析】由题意可知:抽取500份试卷中合格率为,则估计全市10000份试卷成绩合格的人数约为份【详解】解:(人故答案为:8400【点睛】本题考查了用样本的数据特征来估计总体的数据特征,解题的关键是明白利用样本中的数据对整体进行估算是统计学中最常用的估算方法5、0.15【分析】求出4050元的人数,再根据频

16、率频数总数进行计算即可【详解】解:“4050元”的人数为:2001030508030(人),“4050元”的频率为:302000.15,故答案为:0.15【点睛】本题考查频数分布直方图,掌握频率频数总数是正确解答的关键三、解答题1、(1)40,108;(2)见解析;(3)估计该校大约有350名学生在这次竞赛中成绩优秀【分析】(1)由成绩“良好”的学生人数除以所占百分比求出德育处一共随机抽取的学生人数,即可解决问题;(2)把条形统计图补充完整即可;(3)由该校共有学生人数乘以在这次竞赛中成绩优秀的学生所占的比例即可【详解】解:(1)德育处一共随机抽取的学生人数为:1640%=40(名),则在条形

17、统计图中,成绩“一般”的学生人数为:40-10-16-2=12(名),在扇形统计图中,成绩“一般”的扇形圆心角的度数为:360=108,故答案为:40,108;(2)把条形统计图补充完整如下:(3)1400=350(名),即估计该校大约有350名学生在这次竞赛中成绩优秀【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小2、(1)31;51;(2)43人【分析】(1)利用组中值的计算方程直接计算即可得;(2)利用组中值表示各组的平均数,然后根据加权平均数的

18、计算方法求解即可【详解】解:(1),故答案为:31;51;(2)(人),答:该2路公共汽车平均每班的载客量是43人【点睛】题目主要考查组中值及加权平均数的计算方法,理解题意,掌握组中值及加权平均数的计算方法是解题关键3、(1)500人;(2)见解析;(3)300人【分析】(1)用最感兴趣为“包容”的人数除以它所占的百分比即可得到调查学生的总数;(2)用总人数分别减去其他各项的人数得到最感兴趣为“尚德”的人数为100名;(3)用最感兴趣为“卓越”所占百分比乘以2000即可【详解】解:(1)15030%500(名),该校共调查了500名学生;(2)最感兴趣为“尚德”的人数5001505012575

19、100(名),补全图形如图:(3)最感兴趣为“卓越”所占百分比100%15%,200015%300(名)所以该校共有2000名学生,估计全校对“卓越”最感兴趣的人数为300名【点睛】本题考查了条形统计图和扇形统计图的综合,条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较也考查了样本估计总体4、(1);(2)见解析;(3)B;(4)50【分析】(1)首先根据B等级的人数和所占的百分比求出总人数,然后求出C等级的人数和所占的百分比,进而可求出C对应的扇形的圆心角的度数;(2)根据(1)中求出的C等级的人数

20、补全条形统计图即可;(3)把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,根据题意求解即可;(4)根据样本中A等级的人数和总人数可求出所占的百分比,即可求出九年级500名学生中A等级的学生人数【详解】解:(1)B等级的人数是18,所占的百分比是,总人数为(人),C等级的人数为(人),C等级的人数所占的百分比为,C对应的扇形的圆心角是;(2)由(1)可得,C等级的人数为13(人),如图所示,(3)由(1)可得,共有40名学生,中位数为第20位学生和第21位学生成绩的平均数,A等级有4人,B等级有18人,第20位学生和第21位学生成绩都在B等级,所抽取学生的足球运球测试

21、成绩的中位数会落在B等级,故答案是:B;(4)A等级的学生有4人,总人数有40人,A等级的人数所占的百分比为,九年级500名学生中A等级的学生人数为(人)【点睛】此题考查了条形统计图和扇形统计图的综合运用,正确分析统计图,从不同的统计图中得到必要的信息是解题的关键条形统计图能清楚的表示出每个项目的数据;扇形统计图能直接反映部分占总体的百分比大小5、(1)a的值为8;(2)补全统计图见详解;(3)估计符合要求的人数为(人)【分析】(1)结合两个图形可得:A组频数为23,所占比例为23%,可得抽取的总人数,然后利用D组的频数除以总人数即可得出D组所占的比例,求出a的值;(2)利用总人数减去各组频数求出C组频数,然后补全统计图即可;(3)根据题意可得:不少于9个小时的只有A、B两个组,可得出其所占比例,然后总人数乘以比例即可得出结果【详解】解:(1)结合两个图形可得:A组频数为23,所占比例为23%,抽取的总人数为:(人),D组所占的比例为:,a的值为8;(2)C组频数为:,补全统计图如图所示:(3)不少于9个小时的只有A、B两个组,总数为:,所占比例为:,估计符合要求的人数为:(人)【点睛】题目主要考查数据的分析,包括扇形统计图和条形统计图的结合使用,根据部分数据估算整体数据等,熟练掌握根据扇形统计图和条形统计图的获取信息是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁