《2021-2022学年基础强化沪科版八年级下册数学期末定向练习-卷(Ⅰ)(含答案及解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化沪科版八年级下册数学期末定向练习-卷(Ⅰ)(含答案及解析).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 沪科版八年级下册数学期末定向练习 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、绿丝带是颜色丝带的一种,被用来象征许多事物,例如环境保护、大麻和解放
2、农业等,同时绿丝带也代表健康,使人对健康的人生与生命的活力充满无限希望某班同学在“做环保护航者”的主题班会课上制作象征“健康快乐”的绿丝带(丝带的对边平行且宽度相同),如图所示,丝带重叠部分形成的图形是( )A矩形B菱形C正方形D等腰梯形2、在菱形ABCD中,对角线AC、BD相交于点O,AB5,AC6,过点D作AC的平行线交BC的延长线于点E,则BDE的面积为( )A22B24C48D443、在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是:7,10,9,8,7,9,9,8对这组数据,下列说法正确的是( )A平均数是8B众数是8.5C中位数8.5D极差是54、原价为80元的某商
3、品经过两次涨价后售价100元,如果每次涨价的百分率都为,那么根据题意所列的方程为( )ABCD5、满足下列条件的三角形中,不是直角三角形的是( )A三内角之比为3:4:5B三边长的平方之比为1:2:3C三边长之比为7:24:25D三内角之比为1:2:36、一元二次方程配方后可化为( )ABCD7、若一个多边形的内角和为720,则该多边形为( )边形A四B五C六D七8、关于x的一元二次方程有一个根为0,则k的值是( )A3B1C1或D或39、估计的值在( )A1到2之间B2到3之间C3到4之间D4到5之间 线 封 密 内 号学级年名姓 线 封 密 外 10、如图,数轴上点表示的数是-1,点表示的
4、数是1,以点为圆心,长为半径画弧,与数轴交于原点右侧的点,则点表示的数是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知a、b满足,则的值为_2、已知,为实数,且,则_3、已知一组按大小排列的整数数据1,2,2,x,3,4,5,7的众数是2,则这组数据的平均数是_4、计算:_,_5、方程x(x5)7(x5)的解是_三、解答题(5小题,每小题10分,共计50分)1、近几年,中学体育课程改革受到全社会的广泛关注,体育与健康课程标准中明确指出:“健康体魄是青少年为祖国和人民服务的基本前提”某校为了解九年级学生的锻炼情况,随机抽取一班与二班各10名学生进行一分
5、钟跳绳测试,若一分钟跳绳个数为m,规定“不合格”,“及格”,“良好”,“优秀”对于学生一分钟跳绳个数相关数据收集、整理如下:一分钟跳绳次数(单位:个)一班:204 198 190 190 188 198 180 173 163 198二班:203 200 190 186 200 183 169 200 159 190数据分析:两组样本数据的平均数、众数、中位数如下表所示:班级平均数众数中位数一班188.2198190二班188200b二班学生一分钟跳绳成绩扇形统计图应用数据:(1)根据图表提供的信息,_(2)根据以上数据,你认为该年级一班与二班哪个班的学生一分钟跳绳成绩更好?请说明理由(写出一
6、条理由即可);(3)该校九年级共有学生2000人,请估计一分钟跳绳成绩为“优秀”的共有多少人?2、解方程:(y2)(1+3y)63、解下列方程:(1)(2)x26x30(3)3x(x1)2(1x)(4)2x25x+304、 “聚焦双减,落实五项管理”,为了解双减政策实施以来同学们的学习状态,某校志愿者调研了七,八年级部分同学完成作业的时间情况,从七,八年级中各抽取20名同学作业完成时间数据(单 线 封 密 内 号学级年名姓 线 封 密 外 位:分钟)进行整理和分析,共分为四个时段(x表示作业完成时间,x取整数):A;B;C;D,完成作业不超过80分钟为时间管理优秀,下面给出部分信息:七年级取2
7、0名完成作业时间:55,58,60,65,64,66,60,60,78,78,70,75,75,78,78,80,82,85,85,88八年级抽取20名同学中完成作业时间在C时段的所有数据为:72,75,74,76,75,75,78,75七、八年级抽取的同学完成作业时间统计表:年级平均数中位数众数七年级7275b八年级75a75根据以上信息,回答下列问题:(1)填空:_,_,并补全统计图;(2)根据以上数据分析,双减政策背景的作业时间管理中,哪个年级落实得更好?请说明理由(写出一条即可);(3)该校七年级有900人,八年级有700人,估计七、八年级为时间管理优秀的共有多少人?5、小乾同学提出一
8、种新图形定义:一组对边相等且垂直的四边形叫等垂四边形如图1,四边形ABCD中,AB=CD,ABCD,四边形ABCD即为等垂四边形,其中相等的边AB、CD称为腰,另两边AD、BC称为底(1)性质初探:小乾同学探索了等垂四边形的一些性质,请你补充完整:等垂四边形两个钝角的和为 ;若等垂四边形的两底平行,则它的最小内角为 (2)拓展研究:小坤同学发现两底中点的连线与腰长有特定的关系,如图2,M、N分别为等垂四边形ABCD的底AD、BC的中点,试探索MN与AB的数量关系,小坤的想法是把其中一腰绕一个中点旋转180,请按此方法求出MN与AB的数量关系,并写出AB与MN所在直线相交所成的锐角度数如图1,等
9、垂四边形ABCD的腰为AB、CD,AB=CD=AD=3,则较长的底BC长的取值范围是 (3)实践应用:如图3,直线l1,l2是两条相互垂直的公路,利用三段围栏AB、BC、AD靠路边按如图方式围成一块四边形种植园,第四条边CD做成一条隔离带,已知AB=250米,BC=240米,AD=320米,此隔离带最长为多少米?-参考答案-一、单选题1、B【分析】 线 封 密 内 号学级年名姓 线 封 密 外 首先可判断重叠部分为平行四边形,且两条丝带宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形【详解】解:过点A作AEBC于E,AFCD于F,因为两条彩带宽度相同,所以ABCD,ADBC,AE=
10、AF四边形ABCD是平行四边形SABCD=BCAE=CDAF又AE=AFBC=CD,四边形ABCD是菱形故选:B【点睛】此题考查了菱形的判定,平行四边形的面积公式以及平行四边形的判定与性质,利用了数形结合的数学思想,其中菱形的判定方法有:一组邻边相等的平行四边形为菱形;对角线互相垂直的平行四边形为菱形;四条边相等的四边形为菱形,根据题意作出两条高AE和AF,熟练掌握菱形的判定方法是解本题的关键2、B【分析】先判断出四边形ACED是平行四边形,从而得出DE的长度,根据菱形的性质求出BD的长度,利用勾股定理的逆定理可得出BDE是直角三角形,计算出面积即可【详解】解: 菱形ABCD, 在RtBCO中
11、, 即可得BD=8, 四边形ACED是平行四边形, AC=DE=6, BE=BC+CE=10, BDE是直角三角形, SBDE=DEBD=24 故选:B【点睛】本题考查了菱形的性质,勾股定理的逆定理及三角形的面积,平行四边形的判定与性质,求出BD的长度,判断BDE是直角三角形,是解答本题的关键3、C【分析】计算这组数据的平均数、众数、中位数及极差即可作出判断【详解】这组数据的平均数为:,众数为9,中位数为8.5,极差为107=3,故正确的是中位数为8.5故选:C 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查了反映一组数据平均数、众数、中位数、极差等知识,正确计算这些统计量是关
12、键4、A【分析】根据每次涨价的百分率都为,利用百分率表示某商品经过两次涨价后售价,根据题意所列的方程为:即可【详解】解:每次涨价的百分率都为,某商品经过两次涨价后售价,根据题意所列的方程为:故选项A【点睛】本题考查列一元二次方程解增长率问题应用题,掌握列一元二次方程解增长率问题应用题方法与步骤,抓住等量关系,两种表示涨价后的价格相同列方程是解题关键5、A【分析】根据勾股定理逆定理及三角形内角和可直接进行排除选项【详解】解:A、由三内角之比为3:4:5可设这个三角形的三个内角分别为,根据三角形内角和可得,所以,所以这个三角形的最大角为515=75,故不是直角三角形,符合题意;B、由三边长的平方之
13、比为1:2:3可知该三角形满足勾股定理逆定理,即1+2=3,所以是直角三角形,故不符合题意;C、由三边长之比为7:24:25可设这个三角形的三边长分别为,则有,所以是直角三角形,故不符合题意;D、由三内角之比为1:2:3可设这个三角形的三个内角分别为,根据三角形内角和可得,所以,所以这个三角形的最大角为330=90,是直角三角形,故不符合题意;故选A【点睛】本题主要考查勾股定理逆定理及三角形内角和,熟练掌握勾股定理逆定理及三角形内角和是解题的关键6、B【分析】先将6除以2,得到b的取值,再添加b,为了保持式子大小不变,后面再减去b,则等式左边变成了完全平方,剩余的常数移到等式右边即可【详解】解
14、:故选B【点睛】本题考查配方法,掌握如何配方是本题关键7、C【分析】根据多边形的内角和,可得答案 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:设多边形为边形,由题意,得,解得,故选:C【点睛】本题考查了多边形的内角与外角,解题的关键是利用多边形的内角和8、A【分析】把x=0代入原方程得到转化关于k的方程,然后结合二次项系数不等于0求解即可【详解】解:关于x的一元二次方程的一个根是0,-2k-3=0,且k+10,k=3故选A【点睛】本题主要考查了一元二次方程根的定义,一元二次方程的解法,一元二次方程的定义等知识点,熟练掌握一元二次方程根的定义是解题的关键9、D【分析】直接利用二次根
15、式的混合运算法则计算,进而估算计算的结果的取值范围,问题得解【详解】解:原式,故选:D【点睛】本题主要考查了估算无理数的大小以及二次根式的混合运算,解题的关键是正确得出的取值范围10、A【分析】首先根据勾股定理求出AC长,再根据圆的半径相等可知AP=AC,即可得出答案【详解】解:BCAB,ABC=90,AC=,以A为圆心,AC为半径作弧交数轴于点P,AP=AC=,点P表示的数是,故选:A 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】此题主要考查了勾股定理,以及数轴与实数,关键是求出AC的长二、填空题1、【分析】根据二次根式有意义的条件列出不等式,求出a,进而求出b,根据有理数的乘方法
16、则计算即可【详解】解:由题意得:3-a0,a-30,解得:a=3,则b=-5,b3=(-5)3=-125,故答案为:-125【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键2、【分析】根据二次根式的性质求出m的取值,故可求出m,n的值,即可求解【详解】依题意可得m-20且2-m0m=2n-3=0n=3=故答案为:【点睛】此题主要考查二次根式的性质及求值,解题的关键是熟知二次根式被开方数为非负数3、3.25【分析】根据题意得 ,然后用所有数的和除以8,即可求解【详解】解:一组按大小排列的整数数据1,2,2,x,3,4,5,7的众数是2, ,这组数据的平均数是
17、故答案为:3.25【点睛】本题主要考查了求平均数,众数,根据题意得到是解题的关键4、 【分析】根据公式及二次根式的乘法运算法则运算即可【详解】解:由题意可知:,故答案为:, 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查了公式及二次根式的运算,属于基础题,计算过程细心即可5、,【分析】先移项,再将左边利用提公因式法因式分解,继而可得两个关于的一元一次方程,分别求解即可得出答案【详解】解:,则,或,解得,故答案为:,【点睛】本题主要考查解一元二次方程的能力,解题的关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方
18、法三、解答题1、(1)270(2)我认为一班学生一分钟跳绳成绩更好,理由见解析(3)500人【分析】(1)根据优秀率的计算公式及中位数的定义分别求出a、b的值再计算即可;(2)利用表格中的平均数比较得到一班成绩较好;(3)用总人数2000乘以两个班级总的优秀率即可(1)解:二班优秀的有4人,成绩分别为:203,200,200,200优秀率为a%=,a=40;一班成绩由低到高排列为163,173,180,188,190,190,198,198,198,204,居中的两个数为190,190,故中位数b=190,故答案为:270;(2)解:我认为一班学生一分钟跳绳成绩更好,理由如下:一班学生一分钟跳
19、绳平均数188.2大于二班学生一分钟跳绳平均数188,所以一班学生一分钟跳绳成绩更好(3)解:由一分钟跳绳次数得,一班二班优秀的占比为,所以九年级一分钟跳绳优秀的学生大约为人【点睛】此题考查了统计运算,掌握优秀率的计算公式,中位数的定义,利用数据分析得到结论,计算总体中某部分的数量,能读懂统计表并正确分析数据是解题的关键 线 封 密 内 号学级年名姓 线 封 密 外 2、【分析】先将方程化成一般形式,再利用因式分解法解一元二次方程即可得【详解】解:化成一般形式为,因式分解,得,或,或,故方程的解为【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解题关键3、(1),(2),(3),(4),
20、【分析】(1)原方程运用因式分解法求解即可;(2)原方程运用配方法求解即可;(3)原方程移项后运用因式分解法求解即可;(4)原方程运用公式法求解即可(1) , ,(2)x26x30 ,(3)3x(x1)2(1x) , 线 封 密 内 号学级年名姓 线 封 密 外 ,(4)2x25x+30在这里 ,【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法也考查了配方法、公式法解一元二次方程4、(1)78,75;补全图形见解析(2)七年级落实得更好些(3)400人【分析】(1)根据中位数和众数的定义可得a、b的值,再
21、计算出八年级B时段的人数即可补全统计图;(2)可以从平均数、中位数和众数角度去说明;(3)用总人数乘以两个年级时间管理优秀的所占比例即可(1)七年级20名完成作业时间中最多的数据是78分钟,所以,七年级20名完成作业时间的众数是78分钟,即b=78;八年级20名完成作业时间中A段有3人,C有8人,D段有5人,所以,B段的人数为20-3-8-5=4(人)中位数为第10、11个数据的平均数,而A段与B段人数为3+4=7(人)所以中位数为C段从小到大排列第3,4个数据的平均数,即(分钟)所以,a=75补全图形如下:故答案为:78;75;(2)从平均数来看,七年级完成作业的平均时间比八年级的少,故可知
22、七年级落实得更好些;中位数相同,七年级完成作业的平均时间比八年级的少,故可知七年级落实得更好些(3)七年级20名完成作业时间优秀的人数为5人,八年级20名完成作业时间优秀的人数为5人,所以,该校七年级完成作业时间优秀的人数为:(人), 线 封 密 内 号学级年名姓 线 封 密 外 该校八年级完成作业时间优秀的人数为:(人),所以,该校两个年级完成作业时间优秀的人数共有:(人)答:估计七、八年级为时间管理优秀的共有400人【点睛】此题主要考查数据的统计和分析的知识准确把握三数(平均数、中位数、众数)和理解样本与总体的关系是关键5、(1)270;45;(2),AB与MN所在直线相交所成的锐角度数为
23、45,理由见解析;(3)650米【分析】(1)延长CD与BA延长线交于点P,则P=90,可以得到B+C=90,再由B+C+BAD+ADC=360,即可得到BAD+ADC=270;延长CD交BA延长线于P,过点D作DEAB交BC于E,则DEC=B,由等垂四边形的两底平行,即ADBC,可证四边形ABED是平行四边形,得到DE=AB,再由AB=CD,ABCD得到DE=CD,DECD,则DEC=C=45,即四边形ABCD的最小内角为45;(2)延长CD交BA延长线与P,交NM延长线与Q,NM延长线与BA延长线交于点F,将腰AB绕中点M旋转180得到DE,连接CE,BE,由旋转的性质可得:MB=ME,A
24、B=DE,ABM=DEM,则CD=AB=DE,ABDE,即可推出DEC=DCE,EDC=EDP=BPD=90,由勾股定理得到,DEC=DCE=45,再证MN是BCE的中位线,得到,MNCE,则NQC=DCE=45,由此即可推出直线AB与直线MN所在直线相交所成的锐角度数为45;延长CD交BA延长线于P,取AD,BC的中点,M、N连接PM,PN,同理可得APD=90,则,即,由(2)可知,即可推出,再由PMN随着PA减小而减小,当点P与点A重合时,PMN最小,此时PN最小,即BC最小,即此时A、D、C三点共线由勾股定理得:,则;(3)仿照(2)进行求解即可(1)解:如图所示,延长CD与BA延长线
25、交于点P,四边形ABCD为等垂四边形,即AB=CD,ABCD,P=90,B+C=90,B+C+BAD+ADC=360,BAD+ADC=270,故答案为:270;如图所示,延长CD交BA延长线于P,过点D作DEAB交BC于E,DEC=B,等垂四边形的两底平行,即ADBC,四边形ABED是平行四边形,DE=AB,又AB=CD,ABCDDE=CD,DECD,DEC=C=45, 线 封 密 内 号学级年名姓 线 封 密 外 四边形ABCD的最小内角为45,故答案为:45;(2)解:,AB与MN所在直线相交所成的锐角度数为45,理由如下:延长CD交BA延长线与P,交NM延长线与Q,NM延长线与BA延长线
26、交于点F,将腰AB绕中点M旋转180得到DE,连接CE,BE,四边形ABCD是等垂四边形,AB=CD,ABCD,BPC=90,M是AD的中点,MA=MD,由旋转的性质可得:MB=ME,AB=DE,ABM=DEM,CD=AB=DE,ABDE,DEC=DCE,EDC=EDP=BPD=90,DEC=DCE=45,又M、N分别是BE,BC的中点,MN是BCE的中位线,MNCE,NQC=DCE=45,BPC=90,QPF=90,QFP=45,直线AB与直线MN所在直线相交所成的锐角度数为45;如图所示,延长CD交BA延长线于P,取AD,BC的中点,M、N连接PM,PN,同理可得APD=90,即,由(2)
27、可知,又PMN随着PA减小而减小,当点P与点A重合时,PMN最小,此时PN最小,即BC最小,即此时A、D、C三点共线由勾股定理得:,故答案为:; 线 封 密 内 号学级年名姓 线 封 密 外 (3)解:如图所示,取AB,CD的中点M,N,连接MN,作点C关于M的对称点E,连接CE,AE,DE,设直线l1与直线l2交于点P,由(2)可知,AEBC,AE=BC=240米,l1l2,APB=PAE=90,DAE=90,米,M、N分别是CE,CD的中点,MN是CED的中位线,米,MNDE,M为AB的中点,APB=90,米,同理可得,即米,米,隔离带最长为650米【点睛】本题主要考查了等腰直角三角形的性质与判定,三角形中位线定理,直角三角形斜边上的中线,勾股定理,三角形三边的关系等等,解题的关键在于能够正确理解题意作出辅助线求解