《2021-2022学年最新京改版八年级数学下册第十五章四边形同步测评试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年最新京改版八年级数学下册第十五章四边形同步测评试卷(含答案详解).docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十五章四边形同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DB
2、CE成为矩形的是()AAB=BEBDEDCCADB=90DCEDE2、如图,在中,AD平分,E是AD中点,若,则CE的长为( )ABCD3、在平行四边形ABCD中,A30,那么B与A的度数之比为( )A4:1B5:1C6:1D7:14、 “垃圾分类,利国利民”,在2019年7月1日起上海开始正式实施垃圾分类,到2020年底先行先试的46个重点城市,要基本建成垃圾分类处理系统以下四类垃圾分类标志的图形,其中既是轴对称图形又是中心对称图形的是( )A可回收物B有害垃圾C厨余垃圾D其他垃圾5、如图,A+B+C+D+E+F的度数为()A180B360C540D不能确定6、一个多边形每个外角都等于36,
3、则这个多边形是几边形( )A7B8C9D107、下列说法中,不正确的是( )A四个角都相等的四边形是矩形B对角线互相平分且平分每一组对角的四边形是菱形C正方形的对角线所在的直线是它的对称轴D一组对边相等,另一组对边平行的四边形是平行四边形8、如图,在矩形ABCD中,点O为对角线BD的中点,过点O作线段EF交AD于F,交BC于E,OBEB,点G为BD上一点,满足EGFG,若DBC30,则OGE的度数为()A30B36C37.5D459、平行四边形中,则的度数是( )ABCD10、如图,小明从点A出发沿直线前进10m到达点B,向左转,后又沿直线前进10m到达点C,再向左转30后沿直线前进10m到达
4、点照这样走下去,小明第一次回到出发点A,一共走了( )米A80B100C120D140第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在长方形ABCD中,在DC上找一点E,沿直线AE把折叠,使D点恰好落在BC上,设这一点为F,若的面积是54,则的面积=_2、正方形的一条对角线长为4,则这个正方形面积是_3、如图,在中,为上的两个动点,且,则的最小值是_4、如图,在四边形中,分别是的中点,分别以为直径作半圆,这两个半圆面积的和为,则的长为_5、如图,菱形ABCD的对角线AC,BD相交于点O,E为DC的中点,若,则菱形的周长为_三、解答题(5小题,每小题10分,共计5
5、0分)1、(教材呈现)如图是华师版八年级下册数学教材第117页的部分内容结合图,写出完整的证明过程(应用)如图,直线EF分别交矩形ABCD的边AD,BC于点E,F,将矩形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为G,若AB=4,BC=5,则EF的长为 (拓展)如图,直线EF分别交平行四边形ABCD的边AD,BC于点E,F,将平行四边形ABCD沿EF翻折,使点C的对称点与点A重合,点D的对称点为G,若AB=,BC=6,C=45,则五边形ABFEG的周长为 2、已知一个多边形的内角和是外角和的2倍,求这个多边形的边数3、如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长
6、交DC的延长线于点F,连接BF,AC,且ADAF(1)判断四边形ABFC的形状并证明;(2)若AB3,ABC60,求EF的长4、如图是由3个同样的正方形所组成,请再补上一个同样的正方形,使得由4个正方形组成的图形成为一个中心对称图形画出所有情况(给出的图形不一定全用,不够可添加)5、如图,在中,D是边上的一点,过D作交于点E,连接交于点F(1)求证:是的垂直平分线;(2)若点D为的中点,且,求的长-参考答案-一、单选题1、B【分析】先证明四边形BCED为平行四边形,再根据矩形的判定进行解答【详解】解:四边形ABCD为平行四边形,ADBC,且AD=BC,又AD=DE,DEBC,且DE=BC,四边
7、形BCED为平行四边形,A、AB=BE,DE=AD,BDAE,DBCE为矩形,故本选项不符合题意;B、DEDC,EDB=90+CDB90,四边形DBCE不能为矩形,故本选项符合题意;C、ADB=90,EDB=90,DBCE为矩形,故本选项不符合题意;D、CEDE,CED=90,DBCE为矩形,故本选项不符合题意故选:B【点睛】本题考查了平行四边形的判定和性质、矩形的判定等知识,判定四边形BCED为平行四边形是解题的关键2、B【分析】根据三角形内角和定理求出BAC,根据角平分线的定义DAB=B,求出AD,根据直角三角形的性质解答即可【详解】解:ACB=90,B=30,BAC=90-30=60,A
8、D平分BAC,DAB=BAC=30,DAB=B,AD=BD=a,在RtACB中,E是AD中点,CE=AD=,故选: B【点睛】本题考查的是直角三角形的性质、角平分线的定义,掌握直角三角形斜边上的中线是斜边的一半是解题的关键3、B【分析】根据平行四边形的性质先求出B的度数,即可得到答案【详解】解:四边形ABCD是平行四边形,ADBC,B=180-A=150,B:A=5:1,故选B【点睛】本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握平行四边形邻角互补4、B【分析】由题意根据轴对称图形和中心对称图形的定义对各选项进行判断,即可得出答案【详解】解:A、是轴对称图形,不是中心对称图形,故此
9、选项不合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、既不是轴对称图形,也不是中心对称图形,故此选项不符合题意;故选:B.【点睛】本题考查中心对称图形与轴对称图形的概念,注意掌握判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合5、B【分析】设BE与DF交于点M,BE与AC交于点N,根据三角形的外角性质,可得 ,再根据四边形的内角和等于360,即可求解【详解】解:设BE与DF交于点M,BE与AC交于点N, , , 故选:B【点睛】本题主要考查了三角形的外角
10、性质,多边形的内角和,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;四边形的内角和等于360是解题的关键6、D【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数【详解】解:36036=10,这个多边形的边数是10故选D【点睛】本题考查了多边形内角与外角,外角和的大小与多边形的边数无关,熟练掌握多边形内角与外角是解题关键7、D【分析】根据矩形的判定,正方形的性质,菱形和平行四边形的判定对各选项分析判断后利用排除法求解【详解】解:A、四个角都相等的四边形是矩形,说法正确;B、正方形的对角线所在的直线是它的对称轴,说法正确;C、对
11、角线互相平分且平分每一组对角的四边形是菱形,说法正确;D、一组对边相等且平行的四边形是平行四边形,原说法错误;故选:D【点睛】本题主要考查特殊平行四边形的判定与性质,熟练掌握特殊平行四边形相关的判定与性质是解答本题的关键8、C【分析】根据矩形和平行线的性质,得;根据等腰三角形和三角形内角和性质,得;根据全等三角形性质,通过证明,得;根据直角三角形斜边中线、等腰三角形、三角形内角和性质,推导得,再根据余角的性质计算,即可得到答案【详解】矩形ABCD OBEB, 点O为对角线BD的中点, 和中 EGFG,即 故选:C【点睛】本题考查了矩形、平行线、全等三角形、等腰三角形、三角形内角和、直角三角形的
12、知识;解题的关键是熟练掌握矩形、全等三角形、等腰三角形、直角三角形斜边中线的性质,从而完成求解9、B【分析】根据平行四边形对角相等,即可求出的度数【详解】解:如图所示,四边形是平行四边形,故:B【点睛】本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质10、C【分析】由小明第一次回到出发点A,则小明走过的路程刚好是一个多边形的周长,由多边形的外角和为,每次的转向的角度的大小刚好是多边形的一个外角,则先求解多边形的边数,从而可得答案.【详解】解:由 可得:小明第一次回到出发点A,一个要走米,故选C【点睛】本题考查的是多边形的外角和的应用,掌握“由多边形的外角和为得到一共要走12个10米
13、”是解本题的关键.二、填空题1、6【分析】根据三角形的面积求出BF,利用勾股定理列式求出AF,再根据翻折变换的性质可得AD=AF,然后求出CF,设DE=x,表示出EF、EC,然后在RtCEF中,利用勾股定理列方程求解和三角形的面积公式解答即可【详解】解:四边形ABCD是矩形AB=CD=9,BC=ADABBF54,BF=12 在RtABF中,AB=9,BF=12,由勾股定理得, BC=AD=AF=15,CF=BC-BF=15-12=3设DE=x,则CE=9-x,EF=DE=x则x2=(9-x)2+32,解得,x=5DE=5 EC=DC-DE=9-5=4 FCE的面积=43=6【点睛】本题考查了翻
14、折变换的性质,矩形的性质,三角形的面积,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键2、8【分析】正方形边长相等设为,对角线长已知,利用勾股定理求解边长的平方,即为正方形的面积【详解】解:设边长为,对角线为故答案为:【点睛】本题考察了正方形的性质以及勾股定理解题的关键在于求解正方形的边长3、【分析】过点A作AD/BC,且ADMN,连接MD,则四边形ADMN是平行四边形,作点A关于BC的对称点A,连接AA交BC于点O,连接AM,三点D、M、A共线时,最小为AD的长,利用勾股定理求AD的长度即可解决问题【详解】解:过点A作AD/BC,且ADMN,连接MD,则四边形ADMN是平行四边形,M
15、DAN,ADMN,作点A关于BC的对称点A,连接A A交BC于点O,连接AM,则AMAM,AMANAMDM,三点D、M、A共线时,AMDM最小为AD的长,AD/BC,AOBC,DA90,BCBOCOAO,在RtAD中,由勾股定理得:D的最小是值为:,故答案为:【点睛】本题主要考查了等腰三角形的性质,平行四边形的判定与性质,勾股定理等知识,构造平行四边形将AN转化为DM是解题的关键4、4【分析】根据题意连接BD,取BD的中点M,连接EM、FM,EM交BC于N,根据三角形的中位线定理推出EM=AB,FM=CD,EMAB,FMCD,推出ABC=ENC,MFN=C,求出EMF=90,根据勾股定理求出M
16、E2+FM2=EF2,根据圆的面积公式求出阴影部分的面积即可【详解】解:连接BD,取BD的中点M,连接EM、FM,延长EM交BC于N,ABC+DCB=90,E、F、M分别是AD、BC、BD的中点,EM=AB,FM=CD,EMAB,FMCD,ABC=ENC,MFN=C,MNF+MFN=90,NMF=180-90=90,EMF=90,由勾股定理得:ME2+FM2=EF2,阴影部分的面积是:(ME2+FM2)=EF2=8,EF=4.故答案为:4【点睛】本题主要考查对勾股定理,三角形的内角和定理,多边形的内角和定理,三角形的中位线定理,圆的面积,平行线的性质,面积与等积变形等知识点的理解和掌握,能正确
17、作辅助线并求出ME2+FM2的值是解答此题的关键5、16【分析】由菱形的性质和三角形中位线定理即可得菱形的边长,从而可求得菱形的周长【详解】四边形ABCD是菱形,且对角线相交于点O点O是AC的中点E为DC的中点OE为CAD的中位线AD=2OE=22=4菱形的周长为:44=16故答案为:16【点睛】本题考查了菱形的性质及三角形中位线定理、菱形周长等知识,掌握这些知识是解答本题的关键三、解答题1、【教材呈现】见解析;【应用】 ;【拓展】【分析】(教材呈现)由“ASA”可证AOECOF,可得OEOF,由对角线互相平分的四边形是平行四边形可证四边形AFCE是平行四边形,即可证平行四边形AFCE是菱形;
18、(应用)过点F作FHAD于H,由折叠的性质可得AFCF,AFEEFC,由勾股定理可求BF、EF的长,(拓展)过点A作ANBC,交CB的延长线于N,过点F作FMAD于M,由等腰直角三角形的性质可求ANBN3,由勾股定理可求AEAF,再利用勾股定理可求EF的长,再求出五边形ABFEG的周长【详解】解:(教材呈现)四边形ABCD是矩形,AECF,EAOFCO,EF垂直平分AC,AOCO,AOECOF90,AOECOF(ASA)OEOF,又AOCO,四边形AFCE是平行四边形,EFAC,平行四边形AFCE是菱形;(应用)如图,连接AC、EC由(教材呈现)可得平行四边形AFCE是菱形,AFCF,AFEE
19、FC,AF2BF2AB2,(5BF)2BF216,BF,AFCF,ABBC,ABC是直角三角形AC=S四边形AFCE=,EF,故答案为:(拓展)如图,过点A作ANBC,交CB的延长线于N,过点F作FMAD于M,四边形ABCD是平行四边形,C45,ABC135,ABN45,ANBC,ABNBAN45,ANB是等腰直角三角形AN2+BN2=AB2,ANBNANBN3,NC=6+3=9将ABCD沿EF翻折,使点C的对称点与点A重合,AFCF,AFEEFC,ADBC,AEFEFCAFE,AEAF,AF2AN2NF2,AF29(9AF)2,AF5,AEAF5,ANMF,ADBC,四边形ANFM是平行四边
20、形,ANBC,四边形ANFM是矩形,ANMF3,AM=4,MEAEAM1,EF=,BF=NF-BN=9-AF-BN=1,DE=GE=AD-AE=1五边形ABFEG的周长为AB+BF+EF+GE+AG=AB+BF+EF+CD+DE=+1+1=故答案为:【点睛】本题是四边形综合题,考查了平行四边形的性质,菱形的性质,折叠的性质,全等三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造直角三角形是本题的关键2、这个多边形的边数是6【分析】多边形的外角和是360,内角和是它的外角和的2倍,则内角和为2360=720度n边形的内角和可以表示成(n-2)180,设这个多边形的边数是n,即可得到方程,从而
21、求出边数【详解】解:设这个多边形的边数为n,由题意得:(n2)1802360,解得n6,这个多边形的边数是6【点睛】此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握内角和公式为:(n-2)180,外角和为3603、(1)矩形,见解析;(2)3【分析】(1)利用AAS判定ABEFCE,从而得到ABCF;由已知可得四边形ABFC是平行四边形,BCAF,根据对角线相等的平行四边形是矩形,可得到四边形ABFC是矩形;(2)先证ABE是等边三角形,可得ABAEEF3【详解】解:(1)四边形ABFC是矩形,理由如下:四边形ABCD是平行四边形,BAECFE,ABEFCE,E为BC的中点,EB
22、EC,在ABE和FCE中,ABEFCE(AAS),ABCF,四边形ABFC是平行四边形,ADBC,ADAF,BCAF,四边形ABFC是矩形(2)四边形ABFC是矩形,BCAF,AEEF,BECE,AEBE,ABC60,ABE是等边三角形,ABAE3,EF3【点睛】本题考查了平行四边形的性质与判定,矩形的判定,三角形全等的性质与判定,等边三角形的性质与判定,掌握以上性质定理是解题的关键4、见解析【分析】根据中心对称图形的概念求解即可中心对称图形:在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形【详解】解:如图所示,一共有三种情况:【点睛】
23、此题考查了画中心对称图形,解题的关键是熟练掌握中心对称图形的概念中心对称图形:在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形5、(1)见解析;(2)6【分析】(1)由BC=BD,可得BCD=BDC,再由及,可得ECD=EDC,则有EC=ED,从而可得点B、E在线段CD的垂直平分线上,从而可得结论;(2)由D点是AB的中点及BC=BD,可得BDC是等边三角形,从而由30度的直角三角形的性质可分别求得EC、BE,由AE=BE,即可求得AC的长【详解】(1)BC=BDBCD=BDC,点B在线段CD的垂直平分线上,BCD+ECD=EDC+BDCECD=EDCEC=ED点E在线段CD的垂直平分线上BE是线段CD的垂直平分线(2)D点是AB的中点,ACB=90CD是RtABC斜边上的中线CD=BDCD=BC=BDBDC是等边三角形BCD=DBC=60ECF=9060=30由(1)知,BFCDEC=2EF=2,BE=2EC=4DEAB,点D为AB的中点AE=BE=4AC=AE+EC=4+2=6【点睛】本题考查了线段垂直平分线的性质定理和判定定理,直角三角形斜边上的中线的性质,30度角的直角三角形的性质,等边三角形的判定与性质;题目虽不难,但涉及的知识点比较多,灵活运用这些知识是解题的关键