《【火线100天】2021中考数学 第28讲 概率.doc》由会员分享,可在线阅读,更多相关《【火线100天】2021中考数学 第28讲 概率.doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第28讲 概率考点1 事件的分类确定性事件必然事件在一定条件下,必然会发生的事件,称为 .不可能事件在一定条件下,必然不会发生的事件,称为 .必然事件和不可能事件统称为确定性事件.随机事件在一定条件下, 的事件,称为随机事件.考点2 概率的意义与计算概率的意义对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件发生的 .概率的计算一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为:P(A)= .求概率的常用方法概率的定义;列表法;画树状图法;用频率估计概率(在大量重复试验中,事件A发生的频率为,我们可以估计事件
2、A发生的概率为).【易错提示】用频率估计概率的条件必须是“大量重复试验”. 1.必然事件的概率是P(A)=1,不可能事件的概率是P(A)=0,随机事件的概率0P(A)1. 2.用面积法求概率:当随机事件的概率大小与几何图形的面积有关时,往往利用面积法求概率,计算公式为P(A)=. 3.当一次试验要涉及1个因素时,通常采用枚举法求事件的概率;当一次试验涉及2个因素时,可用列表法或画树状图法求概率;当一次试验涉及3个或3个以上的因素时,必须用画树状图法求概率.命题点1 事件的分类例1 (2014聊城)下列说法中不正确的是( ) A.抛掷一枚硬币,硬币落地时正面朝上是随机事件 B.把4个球放入三个抽
3、屉中,其中一个抽屉中至少有2个球是必然事件 C.任意打开七年级下册数学教科书,正好是97页是确定事件 D.一只盒子中有白球m个,红球6个,黑球n个(每个球除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是6方法归纳:事件分为确定事件和不确定事件,确定事件分为必然事件和不可能事件.本题的易错点在把确定事件当作必然事件,从而错选A.1.(2014聊城模拟)下列事件:在足球赛中,弱队战胜强队;抛掷一枚硬币,落地后正面朝上;任取两个正整数,其和大于1;长分别为3、5、9厘米的三条线段能围成一个三角形.其中确定事件的个数是( ) A.1个 B.2个 C.3个
4、 D.4个2.(2013衡阳)“a是实数,|a|0”这一事件是( ) A.必然事件 B.不确定事件 C.不可能事件 D.随机事件3.(2013武汉)袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是( ) A.摸出的三个球中至少有一个球是黑球 B.摸出的三个球中至少有一个球是白球 C.摸出的三个球中至少有两个球是黑球 D.摸出的三个球中至少有两个球是白球4.(2014孝感)下列事件:随意翻到一本书的某页,这页的页码是奇数;测得某天的最高气温是100 ;掷一次骰子,向上一面的数字是2;度量四边形的内角和,结果是3
5、60.其中是随机事件的是 .(填序号)5.(2013沁阳模拟)写出一个所描述的事件是不可能事件的成语 .命题点2 概率的意义例2 (2014台州)某品牌电插座抽样检查的合格率为99%,则下列说法中正确的是( ) A.购买100个该品牌的电插座,一定有99个合格 B.购买1 000个该品牌的电插座,一定有10不个合格 C.购买20个该品牌的电插座,一定都合格 D.即使购买1个该品牌的电插座,也可能不合格方法归纳:概率反映了一事件出现的机会的大小,在分析某个事件发生的概率时,关键要弄清:(1)此事件活动中可能出现哪些结果;(2)理解概率时要注意:概率只表示事件发生的可能性的大小,不能说明某种肯定的
6、结果.1.(2014淄博模拟)某篮球运动员的罚球投篮的命中率大约是83.3%.下列说法错误的是( ) A.该运动员罚球投篮2次,一定全部命中 B.该运动员罚球投篮2次,不一定全部命中 C.该运动员罚球投篮1次,命中的可能性较大 D.该运动员罚球投篮1次,不命中的可能性较小2.(2014德州)下列命题中,真命题是( ) A.若ab,则c-ac-b B.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖 C.点M(x1,y1),点N(x2,y2)都在反比例函数y=的图象上,若x1x2,则y1y2 D.甲、乙两射击运动员分别射击10次,他们射击成绩的方差分别为s2甲=4,s2乙=9,这一过程中乙
7、发挥比甲更稳定3.(2013泰州)事件A:打开电视,它正在播广告;事件B:抛掷一个均匀的骰子,朝上的点数小于7;事件C:在标准大气压下,温度低于0 时冰融化.3个事件的概率分别记为P(A)、P(B)、P(C),则P(A)、P(B)、P(C)的大小关系正确的是( ) A.P(C)P(A)=P(B) B.P(C)P(A)P(B) C.P(C)P(B)P(A) D.P(A)P(B)P(C)命题点3 概率的计算例3 (2014成都)第十五届中国“西博会”将于2014年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到
8、女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2、3、4、5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?并说明理由.【思路点拨】(1)根据概率的意义即可求得;(2)先用枚举法、列表法或树状图法确定出两次摸牌所有可能出现的结果数,以及和为偶数的结果数,从而求出甲、乙概率的大小,做出判断.【解答】方法归纳:如果可能出现的结果较少,用枚举法简单;如果二次性操作且结果的可能性较多时,列表法和画树状图法可以不重不漏列出所有可能出现的结果.本题注意是二次无
9、放回抽取,关键字“任取2张”,注意和有放回抽取的区别.1.(2014金华)一个布袋里装有5个球,其中3个红球、2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是( ) A. B. C. D.2.(2014苏州)如图,一个圆形转盘被分成6个圆心角都为60的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是( ) A. B. C. D.3.(2014杭州)让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和是2的倍数或是3的倍数的概率等于( ) A. B. C. D.4.(2014日照)小英同时掷甲、乙两枚
10、质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x、乙立方体朝上一面上的数字为y,这样就确定点P的一个坐标(x,y),那么点P落在双曲线y=上的概率为( ) A. B. C. D.5.(2014滨州)在一个口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.小明和小强采取了不同的摸取方法,分别是:小明:随机摸取一个小球记下标号,然后放回,再随机地摸取一个小球,记下标号;小强:随机摸取一个小球记下标号,不放回,再随机地摸取一个小球,记下标号;(1)用画树状图(或列表法)分别表示小明和小强摸球的所有可能出现的结果;(2)分别求出小明和小
11、强两次摸球的标号之和等于5的概率.1.(2013遂宁)以下问题,不适合用全面调查的是( ) A.了解全班同学每周体育锻炼的时间 B.旅客上飞机前的安检 C.学校招聘教师,对应聘人员面试 D.了解全市中小学生每天的零花钱2.(2014益阳)小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,她从中随机抽取1个,抽中数学题的概率是( ) A. B. C. D.3.(2014东营)小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域的概率是( ) A. B. C. D.4.(2013青岛)一个不透明的
12、口袋装有除颜色外都相同的五个白球和若干个红球,在不允许将球倒出来数的情况下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程.小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有( ) A.45个 B.48个 C.50个 D.55个5.(2014泰安)在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下其标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是( ) A. B. C. D.6.(2014泰州)任意抛掷一枚均匀的骰子一次,
13、朝上的点数大于4的概率等于 .7.(2014长沙)100件外观相同的产品中有5件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是 .8.(2013大连)某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:移植总数(n)4007501 5003 5007 0009 00014 000成活数(m)3696621 3353 2036 3358 07312 628成活的频率mn0.9230.8830.8900.9150.9050.8970.902根据表中数据,估计这种幼树移植成活率的概率为 (精确到0.1).9.(2014内江)有6张背面完全相同的卡片,每张正面分别画有三角形、平
14、行四边形、矩形、正方形、梯形和圆,现将其全部正面朝下搅匀从中任取一张卡片,抽中正面画的图形是中心对称图形的概率为 .10.(2014台州)抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不见的情况下随机摸出两只袜子,他们恰好同色的概率是 .11.(2014凉山)凉山州某学校积极开展“服务社会,提升自我”的志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰是一男一女的概率是.12.(2014温州)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)求从袋中摸出一个球是黄球的概
15、率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是.求从袋中取出黑球的个数.13.(2014徐州)某学习小组由3名男生和1名女生组成,在一次合作学习后,开始进行成果展示.(1)如果随机抽取1名同学单独展示,那么女生展示的概率为 ;(2)如果随机抽取2名同学共同展示,求同为男生的概率.14.(2014淄博)节能灯根据使用寿命分成优等品、正品和次品三个等级,其中使用寿命大于或等于8 000小时的节能灯是优等品,使用寿命小于6 000小时的节能灯是次品,其余的节能灯是正品,质监部门对某批次的一种节能灯(共200个)的使用寿命进行追踪调查,并将结果整理成下表.寿命(小时)频数频
16、率4 000t5 000100.055 000t6 00020a6 000t7 000800.407 000t8 000b0.158 000t9 00060c合计2001(1)根据分布表中的数据,在答题卡上写出a,b,c的值;(2)某人从这200个节能灯中随机购买1个,求这种节能灯恰好不是次品的概率.15.(2014云南)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去,规定如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回,重新洗匀后背面朝上放置在桌面上,再
17、随机抽出一张记下数字,若两个数字的和为奇数,则小明去;若两个数字的和为偶数,则小亮去.(1)请用列表或画树形图(树状图)的方法表示抽出的两张卡片上的数字和的所用可能出现的结果;(2)你认为这个规则公平吗?请说明理由.16.(2014宁波)如图,在22的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使ABC为直角三角形的概率是( ) A. B. C. D.17.(2014黄石)一般地,如果在一次实验中,结果落在区域D中每一个点都是等可能的,用A表示“实验结果落在D中的某个小区域M中”这个事件,那么事件A发生的概率P(A)=.如图,现在等边ABC内射入一个点,则该点落在AB
18、C内切圆中的概率是 .18.(2014巴中)在四边形ABCD中,ABCD,ADBC,AB=CD,AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是 .19.(原创)如图所示,电路图上有四个开关A,B,C,D和一个小灯泡,闭合开关D或同时闭合开关A,B,C都可以使小灯泡发光.(1)任意闭合其中一个开关,则小灯泡发光的概率等于 ;(2)任意闭合其中两个开关,请用画树状图或列表的方法求出小灯泡发光的概率.20.(2014安徽)如图,管中放置同样的绳子AA1、BB1、CC1.(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A、
19、B、C三个绳头中随机选两个打一个结,再从右端A1、B1、C1三个绳头中随机选两个打一个结,求这三根绳子能连接成一根长绳子的概率.参考答案考点解读必然事件 不可能事件 可能发生也可能不发生 概率 各个击破例1 C题组训练 1.B 2.A 3.A 4. 5.答案不唯一:拔苗助长等例2 D题组训练 1.A 2.A 3.B例3 (1)20人中有12人是女生,P(女生)=.(2)解法一(枚举法):任取2张,所有可能的结果23,24,25,34,35,45,共6种,其中和为偶数的结果有:“24”和“35”2种,P(甲参加)=,P(乙参加)=,游戏不公平.解法二(列表法):列表如下:23452(3,2)(4
20、,2)(5,2)3(2,3)(4,3)(5,3)4(2,4)(3,4)(5,4)5(2,5)(3,5)(4,5)P(甲参加)=,P(乙参加)=,游戏不公平.解法三(树状图法):画树状图如下:P(甲参加)=,P(乙参加)=,游戏不公平.题组训练 1.D 2.D 3.C 4.C5.(1)画树状图如下:(2)P(小明两次摸球的标号之和等于5)=.P(小强两次摸球的标号之和等于5)=.整合集训1.D 2.C 3.C 4.A 5.C 6. 7. 8.0.9 9. 10. 11.12.(1)20个球里面有5个黄球,故P1=.(2)设从袋中取出x(0x8,且x为整数)个黑球,则=,解得x=2.经检验,x=2
21、是方程的解,且符合题意.答:从袋中取出黑球的个数为2个.13.(1).(2)画树状图如下:所有可能的结果共有12种,两人都是男生的结果有6种.P(两男)=.14.(1)a=0.1,b=30,c=0.3;(2)这批节能灯中,优等品有60个,正品有110个,次品有30个,此人购买的1个节能灯恰好不是次品的概率为:P=0.85.15.(1)由树状图可知共出现了16种等可能的结果.(2)出现的奇数有8个,则P(和为奇数);P(和为偶数).P(和为奇数)P(和为偶数),游戏公平.16.D 17. 18.19.(1).(2)画树状图如图:由电路图知,只要接通D,小灯泡就能发光,P(小灯泡发光)=.20.(1)小明可选择的情况有三种,每种发生的可能性相等,恰好选中绳子AA1的情况为一种,所以小明恰好选中绳子AA1的概率为.(2)依题意,分别在两端随机任选两头打结,总共有三类9种情况,列表如下,每种发生的可能性相等.A1B1B1C1A1C1ABAB、A1B1AB、B1C1AB、A1C1BCBC、A1B1BC、B1C1BC、A1C1ACAC、A1B1AC、B1C1AC、A1C1其中左、右打结是相同字母(不考虑下标)的情况,不可能连接成为一根长绳.能连接成为一根长绳的情况有6种,三根绳子连接成为一根长绳的概率为P=.9