届高考数学一轮复习第七章立体几何第一节空间几何体的结构特征及三视图与直观图课时作业.doc

上传人:知****量 文档编号:28125751 上传时间:2022-07-26 格式:DOC 页数:8 大小:212.54KB
返回 下载 相关 举报
届高考数学一轮复习第七章立体几何第一节空间几何体的结构特征及三视图与直观图课时作业.doc_第1页
第1页 / 共8页
届高考数学一轮复习第七章立体几何第一节空间几何体的结构特征及三视图与直观图课时作业.doc_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《届高考数学一轮复习第七章立体几何第一节空间几何体的结构特征及三视图与直观图课时作业.doc》由会员分享,可在线阅读,更多相关《届高考数学一轮复习第七章立体几何第一节空间几何体的结构特征及三视图与直观图课时作业.doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第一节 空间几何体的结构特征及三视图与直观图课时作业A组根底对点练1.如下图,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),那么四面体ABCD的正视图、侧视图、俯视图是(用代表图形)()ABC D解析:正视图应为边长为3和4的长方形,且正视图中右上到左下的对角线应为实线,故正视图为;侧视图应为边长为4和5的长方形,且侧视图中左上到右下的对角线应为实线,故侧视图为;俯视图应为边长为3和5的长方形,且俯视图中左上到右下的对角线应为实线,故俯视图为,应选B.答案:B2一个几何体的三视图如下图,其中俯视图为正三角形,那么侧视图的面积为()A8B4C4 D4解析:由三视图可

2、知,该几何体是一个正三棱柱,高为4,底面是一个边长为2的正三角形因此,侧视图是一个长为4,宽为的矩形,其面积S44.答案:B3某几何体的三视图如下图,那么该几何体中最长的棱长为()A3 B2C. D2解析:由三视图得,该几何体是四棱锥PABCD,如下图,ABCD为矩形,AB2,BC3,平面PAD平面ABCD,过点P作PEAD,那么PE4,DE2,所以CE2,所以最长的棱PC2,应选B.答案:B4某空间几何体的三视图如下图,那么该几何体的外表积为()A124 B188C28 D208解析:由三视图可知该几何体是底面为等腰直角三角形的直三棱柱,如图那么该几何体的外表积为S22242224208,应

3、选D.答案:D5某几何体的三视图如下图,那么该几何体的外表积是()A(253) B(253)C(293) D(293)解析:由三视图可知该几何体的直观图如下图,所以该几何体的外表积为(12)2243168(253),应选B.答案:B6(2022长沙模拟)某几何体的正视图和侧视图均为图甲所示,那么在图乙的四个图中可以作为该几何体的俯视图的是()A BC D解析:假设图是俯视图,那么正视图和侧视图中矩形的竖边延长线有一条和圆相切,故图不合要求;假设图是俯视图,那么正视图和侧视图不相同,故图不合要求,应选A.答案:A7(2022石家庄市模拟)某几何体的三视图如下图,那么其体积为()A. BC. D解

4、析:由几何体的三视图知,该几何体的一局部是以腰长为1的等腰直角三角形为底面,高为3的三棱锥,另一局部是底面半径为1,高为3的圆锥的四分之三所以几何体的体积为3113,应选D.答案:D8某几何体的三视图如下图,那么该几何体的体积为()A168 B88C1616 D816解析:由三视图复原的几何体是一个长方体与半个圆柱的组合体,如图其中长方体的长、宽、高分别是4,2,2,半个圆柱的底面半径为2,母线长为4.长方体的体积V142216,半个圆柱的体积V22248.这个几何体的体积是168.答案:A9一个半径为2的球体经过切割之后所得几何体的三视图如下图,那么该几何体的外表积为()A16 B12C14

5、 D17解析:根据三视图可知几何体是一个球体切去四分之一,那么该几何体的外表是四分之三球面和两个截面(半圆)由题意知球的半径是2,该几何体的外表积S4222216.答案:A10一个几何体按比例绘制的三视图如下图(单位:m),那么该几何体的体积为()A. m3 B m3C. m3 D m3解析:由三视图可知,几何体为如下图的几何体,其体积为3个小正方体的体积加三棱柱的体积,所以V3(m3),应选A.答案:A11球面上有A,B,C三点,球心O到平面ABC的距离是球半径的,且AB2,ACBC,那么球O的外表积是()A81 B9C. D解析:由题意可知,AB为ABC的外接圆的直径,设球O的半径为R,那

6、么R2()2()2,可得R,那么球的外表积S4R29.应选B.答案:B12某几何体的三视图如下图,那么该几何体的体积为_解析:将三视图复原成直观图,得到如下图几何体,设BC的中点为G,连接AG,DG,ABC是一个边长为2的等边三角形,其高AG.该几何体可以看成一个三棱锥与一个四棱锥组合而成该几何体的体积VV三棱锥DABGV四棱锥ADECGSABGDGS四边形DECGAG1221.答案:13某空间几何体的三视图如下图,那么该几何体的体积为_解析:由题意得到几何体的直观图如图,即从四棱锥PABCD中挖去了一个半圆锥其体积V222122.答案:14.某零件的正(主)视图与侧(左)视图均是如下图的图形

7、(实线组成半径为2 cm的半圆,虚线是等腰三角形的两腰),俯视图是一个半径为2 cm的圆(包括圆心),那么该零件的体积是_解析:依题意得,零件可视为从一个半球中挖去一个小圆锥所剩余的几何体,其体积为232214(cm3)答案:4 cm3B组能力提升练1假设三棱锥SABC的底面是以AB为斜边的等腰直角三角形,ABSASBSC2,那么该三棱锥的外接球的外表积为()A. BC. D解析:在等腰直角三角形ABC中,AB是斜边且AB2,取AB的中点D,连接CD,SD.CDADBD1.又SASBSC2,SDAB,且SD,在SCD中,SD2CD2SC2,SDCD,SD平面ABC.三棱锥SABC的外接球球心在

8、SD上,记为O,设球半径为R,连接OA,那么SOOAR,在RtAOD中,AD1,ODR,AOR,12(R)2R2R,三棱锥SABC的外接球的外表积S4R24()2.应选A.答案:A2一个几何体的三视图如下图,那么该几何体的体积为()A.B. C.D.解析:该几何体可视为正方体截去两个三棱锥所得,如下图,所以其体积为23222111.应选D.答案:D3.如图是一个底面半径为1的圆柱被平面截开所得的几何体,截面与底面所成的角为45,过圆柱的轴的平面截该几何体所得的四边形ABBA为矩形,假设沿AA将其侧面剪开,其侧面展开图的形状大致为()解析:过AB作平行于底面的半平面,如图,取截面边界上任一点P,

9、过P作PP垂直于半平面,垂足为P,延长PP交圆柱底面于点P1,过P作PMAB,垂足为M,连接MP,那么MPAB,PMP就是截面与底面所成的角,PMP45,设AB的中点为O,连接OP.设lx,那么AOPx,在RtPPM中,PPMP,在RtOPM中,MPOPsinMOPsin x,PPsin x,PP1AAsin x,应选A.答案:A4如图是一个几何体的三视图,那么该几何体任意两个顶点间距离的最大值是()A4 B5C3 D3解析:作出直观图如下图,通过计算可知AF最长且|AF|3.答案:D5.高为4的直三棱柱被削去一局部后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如下图,那么该几何体的体

10、积是原直三棱柱的体积的()A. BC. D解析:由侧视图、俯视图知该几何体是高为2、底面积为2(24)6的四棱锥,其体积为4.易知直三棱柱的体积为8,那么该几何体的体积是原直三棱柱的体积的,应选C.答案:C6(2022昆明市检测)我国南北朝时期的伟大科学家祖暅在数学上有突出奉献,他在实践的根底上,提出下面的体积计算原理(祖暅原理):“幂势既同,那么积不容异“幂是截面面积,“势是几何体的高意思是:假设两个等高几何体在同高处的截面面积总相等,那么这两个几何体的体积相等现有一旋转体D(如图1所示),它是由抛物线yx2(x0),直线y4及y轴围成的封闭图形绕y轴旋转一周形成的几何体,旋转体D的参照体的

11、三视图如图2所示,利用祖暅原理,那么旋转体D的体积是()A. B6C8 D16解析:由三视图知参照体是一个直三棱柱,其体积V448,故旋转体D的体积为8,应选C.答案:C7如图,某三棱锥的正视图、侧视图和俯视图分别是直角三角形、等腰三角形和等边三角形假设该三棱锥的顶点都在同一个球面上,那么该球的外表积为()A27 B48C64 D81解析:由三视图可知该几何体为三棱锥,该棱锥的高VA4,棱锥底面ABC是边长为6的等边三角形,作出直观图如下图因为ABC是边长为6的等边三角形,所以外接球的球心D在底面ABC上的投影为ABC的中心O,过D作DEVA于E,那么E为VA的中点,连接OD,OA,DA,那么

12、DEOA32,AEVA2,DA为外接球的半径,所以DA4,所以外接球的外表积S4r264.应选C.答案:C8(2022天津测试)假设一个几何体的外表积和体积相同,那么称这个几何体为“同积几何体某几何体为“同积几何体,其三视图如下图,那么a()A. BC. D82解析:根据几何体的三视图可知该几何体是一个四棱柱,如下图,可得其体积为(a2a)aaa3,其外表积为(2aa)a2a2a22aaaa7a2a2,所以7a2a2a3,解得a,应选A.答案:A9.(2022郑州质检)如下图是一个几何体的三视图,那么这个几何体外接球的外表积为()A8B16C32D64解析:复原三视图可知该几何体为一个四棱锥,

13、将该四棱锥补成一个长、宽、高分别为2,2,4的长方体,那么该长方体外接球的半径r2,那么所求外接球的外表积为4r232.答案:C10.某几何体的三视图如下图,那么该几何体的外表积为()A182 B20C20 D16解析:由三视图可知,这个几何体是一个棱长为2的正方体割去了两个半径为1、高为1的圆柱,其外表积相当于正方体五个面的面积与两个圆柱的侧面积的和,即该几何体的外表积S45221120,应选B.答案:B11(2022南昌模拟)某四棱锥的三视图如下图,那么该四棱锥最长的一条侧棱的长度是_解析:由题意可知该几何体是一个底面为直角梯形的四棱锥,梯形的两底边长分别为4,2,高为3,棱锥的高为2,所

14、以最长侧棱的长度为.答案:12在三棱锥ABCD中,侧棱AB,AC,AD两两垂直,ABC,ACD,ADB的面积分别为,那么该三棱锥外接球的外表积为_解析:设相互垂直的三条侧棱AB,AC,AD分别为a,b,c,那么ab,bc,ac,解得a,b1,c.所以三棱锥ABCD的外接球的直径2R,那么其外接球的外表积S4R26.答案:613一个直三棱柱被削去一局部后的几何体ABCDE及其侧视图、俯视图如下图,其中侧视图是直角梯形,俯视图是等腰直角三角形设M是BD的中点,点N在棱DC上,且MN平面BDE,那么CN_.解析:由题意可得,DC平面ABC,所以DCCB.假设MN平面BDE,那么MNBD.又因为MDNCDB,所以DMNDCB,所以,故,解得DN3,所以CNCDDN1.答案:114(2022武汉市模拟)棱长均相等的四面体ABCD的外接球半径为1,那么该四面体的棱长为_解析:将棱长均相等的四面体ABCD补成正方体,设正方体的棱长为a,那么正四面体ABCD的棱长为a,正方体的体对角线长为a,由a2a,那么a.答案:

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁