《2022年自动立体仓库传输系统机电一体化设计方案外文翻译.docx》由会员分享,可在线阅读,更多相关《2022年自动立体仓库传输系统机电一体化设计方案外文翻译.docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选学习资料 - - - - - - - - - 毕业论文(设计)外 文 翻 译题 目:使数控机床更开放、兼容和智能化的技术回忆系部名称:专业班级:同学姓名:学 号:指导老师:老师职称:名师归纳总结 - - - - - - -第 1 页,共 11 页精选学习资料 - - - - - - - - - 使数控机床更开放、兼容和智能化的技术回忆1. 当前数控技术障碍 今日的数控机床设计已经很好的研发出了具有像多轴掌握,误差补偿和多工艺制造(例如合 并磨 /转/激光加工与研磨机)的功能;在此同时,这些功能都使得编程任务越来越困难和机床本 身较难适应;已经取得的一些成果缓解了这一问题,特殊是开放式架构的
2、趋势掌握 OSACA 基础5 ,开放式模块化结构掌握器(OMAC ) 6 ,其中第三方软件可在一个工作在掌握器使用标准的 Windows 操作系统;另一项识别产业的进展是软件掌握器的应用,这些软件掌握器里应用的是 PLC 掌握技术,而不是在硬件方面;虽然进展已经改进了软件工具和数控系统,但是供应商和用户仍在寻求 CAD ,CAPP 系统, CAM 和数控在集成和转化过程中,没有信息丢失的每个阶段的共同语言;尽管有很多CAM 工具支持数掌握造,但是从一个系统到另一个系统的适应性和互操作性问题,仍旧在限制这些工具的广泛使用;2. 产品数据的兼容性和互操作性 数控机床完成产品设计和制造周期,但往往不
3、是要与他们的上游子系统进行通信,例如CAD, CAPP 和 CAM 系统;在数据交换协议发生时,如SET ,德国汽车工业协会,初始图形交换规范( IGES )使用时,信息沟通可以在 CAD 和/或 CAM 系统之间发生异构;但是,这是胜利的,由于只有部分这些协议的主要目的是几何信息的交换,而不是完全适用于全部的 CAD / CAPP / CAM 的行业需求;因此,国际社会制定了 ISO10303 7 一套标准,像我们熟知的步进 . 通过实施 CAD 系统内的步进 AP - 203 8 和步进 AP - 214 9,数据交换的障碍将被删除;然而,在 CAD / CAM 与数控系统的数据交换问题仍
4、未解决;CAD 系统的目的是描述一个零件几何外形的精确,而 CAM 系统在使用运算机系统生成的生产方案和掌握操作是依据 CAD 模型中的几何信息和对本车间的现有资源;CAM 系统的最终结果是一套可以在数控数控机床上执行的程序集;步进 AP - 203 和步进 AP - 214 只为一个统一 CAM 系统输入数据;在 CAM 系统,有 50年历史的国际标准 ISO 6983(为 G 代码或 RS274D 已知) 10 仍主导着大多数数控机床掌握系统;国际标准 6983 虽然过时,但仍广泛使用,它只支持单向的信息流从设计到制造;CAD 数据没有在一台机床使用;相反,它们处理的一个后处理器只能获得一
5、个低层次的,不完整的使修改,验证和仿真困难的数据集;在车间里所作的修改不能直接反馈给设计师;因此,珍贵的体会在车间不能被储存和再利用;3.Inflexible 数控掌握制度ISO 6983 标准侧重于编程与敬重刀具中心位置(CL)的路径,而不是机器轴相对于部分加工任务;因此,国际标准化组织 6983 定义的程序语句的语法,但在大多数情形下,叶片的语义模糊不清,低级别的程序执行了有限的掌握在一起;这些方案,当在一台机器专用 CAM 系统后处理加工,成为依靠于机器的;为了提高数控机床的才能,数控掌握器厂商也开发了自己定制的掌握命令集,以增加更多的功能到了自己的数控掌握器,延长国际标准6983 ;这
6、些不同的命令集从供名师归纳总结 - - - - - - -第 2 页,共 11 页精选学习资料 - - - - - - - - - 应商到供应商在全部的机器工具再次发生转变,进一步导致不兼容的数据;目前Inflexible数控掌握制度是指由一个CAM 系统的输出没有适应性,这反过来又否认有任何互操作性数控机床;最主要的缘由是,G 代码程序的部分只包含低层次的信息,可描述为“ 怎么做” ;不管多么有才能的数控机床,能做的只是忠实的依据 G 代码程序完成加工;这是不行能完成的智能掌握或加工优化;4. 步进数控标准今日,一个新的标准,即国际标精确认为步进 - 数控的非正式14649 11-16 正在
7、由供应商,用户和世界学术机构供应一个广泛的智能碳奈米尖锥数据模型开发的新品种;数据模型是一个通用的标准,旨在特地为数控编程,使规范的数控掌握器,数控代码生成工具成为现实;目前两个步进- 数控的版本正在开发由 ISO ;第一是应用参考模型(亚美尼亚)(即国际标准组织14649)及其他应用说明模型(AIM )的对 ISO 14649(即 10303 国际标准组织的 AP - 238 17 );如需使用和它们之间的区分的信息读者可参考 18,19 ;相反,目前的数控编程标准(ISO 6983),国际标准化组织 14649 不是一个零件的编程方法,通常不能描述数控机床刀具的运动;相反,它供应了一个具体
8、的和结构化数据接口,采纳基于特点的方案在一系列的信息中表示,如被加工的功能,工具类型使用,操作执行一个面对对象数据模型for 数控s,遵循操作次序;尽管通过使用步进- 数控可能定义出亲密机床轨迹,但是,该标准的目的是通过使用一种智能掌握器步进数控掌握器,在后期做出打算;这套标准的目的就是,步进 - 数控的部分程序可能会被写入一次,在很多不同的机床掌握器供应了所需的机器类型使用过程才能;在这一过程中,无论是数控机床及其掌握方案作出适应性和互操作;图;1说明白这两个几何和加工信息,现在可以双向之间的 CAD / CAM 系统及步进- 数控的掌握器转让20 ;一个关键的问题是刀具轨迹运动的信息是可选
9、的,最好应在由步进- 数控的掌握器的机器产生的;加工特点和加工操作这类几何信息被定义为“ 工步” ;这些几何信息为制造组件供应了一个基础的“ 工作方案” ;图二的这些数据说明的是包括钻孔,铣削等工步在内的一部分工作方案;其中重要的一点要留意的是,此代码是步进- 数控的转移文件,它是进口/出口流入和流出的步进 - 数控的智能掌握器;掌握器把这些文件翻译后,使网通运营商在掌握器里通过人工数据或CAD/CAM 系统在工步水平上实现数据交互;下面是使用步进数控系统的一些优点;步进数控系统供应了一个完整的和结构化数据模型,用来链接与几何和技术信息,这样在产品开发过程的不同阶段就没有信息的丢失;它的数据元
10、素足够充分描述面对任务的数控数据;数据模型的技术的进一步扩展和可扩展性(与一样性类),来符合特定的 CAM 技术, SFP 或数控的要求;名师归纳总结 - - - - - - -第 3 页,共 11 页精选学习资料 - - - - - - - - - 削减;由于建立在智能优化的步进 - 数控掌握器之上,所以中小型工作的加工时间可以后处理机制将被剔除,由于接口并不需要机器的具体信息;机床更安全,更适合,由于步进数控系统与机床厂商是独立开的;在车间修改就可以储存并反馈到设计部门,因此,从 流可以实现;CAD / CAM 系统到数控机床的双向信息交 XML 文件可以作为信息载体从而实现基于 Web
11、的分布式制造;对步进 - 数控的命题具体争论可以由 OMAC 步进 - 数控的工作组编写了一份报告发觉 24 和其他出版物 20,23,25 完成;5. 步进数控系统的国际社会在 20 世纪 90 岁月后半期,国际社会通过了国际智能制造系统(IMS )的方案 26 ,开头在数控编程的概念方面进行重大改革;该方案共四个,即在欧洲,韩国,瑞士和美国全球各地区的个别项目统筹;该方案的主要和谐员包括西门子(欧盟),(美国)和资源中心,国际机场理事会(韩国);CADCAMation (瑞士),步进工具欧洲数控步进系统主要负责掌握铣床和对 ISO 14649 标准的检查;它有 15 个合作伙伴,由西门子领
12、导,它的用户有戴姆勒克莱斯勒,沃尔沃用户等,支持它的争论机构有 WZL 亚琛,亚琛和斯图加特高校的资讯系统部;瑞士人引领了线切割和合作模片电火花标准,如 Agie ,Starrag 和 CAM 制造商 CADCAMation厂商标准的进展;在韩国的工作由浦项科技高校和汉城国立高校浦项高校进行,他们负责的是车削和铣削国际标准 14649 兼容掌握器领域的争论;其它研究小组的工作地区,包括英国和新西兰;在美国步进工具公司出品的步进数控程序被称为“ 超级模特” ;由美国国家标准协会与技术争论院主办的步进数控程序取得了重大进展,通过使用数控步进程序实现了从 CAD 到数控生产的全自动化;该项目涉及的不
13、仅包括波音,洛克马丁公司,通用电气和通用汽车等工业集团,仍6.包括公认的强大的合作伙伴,如吉布斯协会和 MasterCAM 的供应商 . 更加开放和互操作性的步进数控工具这是四种和步进数控相关的争论工作,(1)传统的数控使用步进数控的 ;2使用新的步进数控的;( 3)步进数控使掌握智能化;(4)协作性的步进数控加工;适应性从类型 1 到类型 4 依次增加;必需指出的是,步进数字掌握和步进一起,现已形成一个出现较完整的产品信息的通用数据模型;(本文摘译自 Computers in Industry 57 2006 141 152)名师归纳总结 - - - - - - -第 4 页,共 11 页精
14、选学习资料 - - - - - - - - - Making CNC machine tools more open, interoperable and intelligent a review of the technologies X.W. Xu a,* , S.T. Newman b a Department of Mechanical Engineering, School of Engineering, The University of Auckland, Private Bag 92022, Auckland, New Zealand 1. Impediments of cur
15、rent CNC technologies Todays CNC machine designs are well developed withcapabilities such as multi-axis control, error compensation andmulti-process manufacture e.g. combined mill/turn/laser andgrinding machines. In the mean time, these capabilities havemade the programming task increasingly more di
16、fficult andmachine tools themselves less adaptable. Some effort has beenmade to alleviate this problem, in particularly the trend towardsopen architecture control, based on OSACA 5 and openmodular architecture controller OMAC 6, where third partysoftware can be used at the controller working within
17、a standardwindows operating system. One further recognisable industrialdevelopment is the application of software controllers, wherePLC logic is captured in software rather than in hardware.Although these developments have improved software toolsand the architecture of CNC systems, vendors and users
18、 are stillseeking a common language for CAD, CAPP, CAM, and CNC,which integrates and translates the knowledge of each stagewith no information loss. Though there are many CAM toolssupporting NC manufacture, the problem of adaptability andinteroperability from system to system was and is still seen a
19、sone of the key issues in limiting the wider use of these tools. 2.Product data compatibility and interoperability CNC machine tools complete the product design and manufacturing lifecycle, and more often than not they have to communicate with upstream sub-systems, such as CAD, CAPP and CAM. In the
20、case when neutral data exchange protocols, such as SET, VDA, and initial graphics exchange specification IGES are used, information exchange can happen between heterogeneous CAD and/or CAM systems. This is however only partially successful since these protocols are mainly designed to exchange geomet
21、rical information and not totally suitable to all the needs of the CAD/CAPP/CAM industry. Thus, the international community developed the ISO10303 7 名师归纳总结 - - - - - - -第 5 页,共 11 页精选学习资料 - - - - - - - - - set of standards, well known as STEP. By implementing STEP AP-203 8 and STEP AP-214 9 within C
22、AD systems, the data exchange barrier is removed. Yet, data exchange problems between CAD/CAM and CNC systems remain unsolved. CAD systems are designed to describe the geometry of a part precisely, whereas CAM systems focus on using computer systems to generate plans and control the manufacturing op
23、erations according to the geometrical information present in a CAD model and the existing resources on the shop-floor. The final result from a CAM system is a set of CNC programs that can be executed on a CNC machine. STEP AP-203 and STEP AP-214 only unify the input data for a CAM system. On the out
24、put side of a CAM system, a 50-year-old international standard ISO 6983 known as G-Code or RS274D 10 still dominates the control systems of most CNC machines. Outdated yet still widely used, ISO 6983 only supports one-way information flow from design to manufacturing. The CAD data are not utilised a
25、t a machine tool. Instead, they are processed by a post-processor only to obtain a set of low-level, incomplete data that makes modification, verifications and simulation difficult. The changes made at the shopfloor cannot be directly fed back to the designer. Hence, invaluable experiences on the sh
26、op-floor cannot be preserved and re-utilised. 3.Inflexible CNC control regime The ISO 6983 standard focuses on programming the path of the cutter centre location CL with respect to the machine axes, rather than the machining tasks with respect to the part. Thus, ISO 6983 defines the syntax of progra
27、m statements, but in most cases leaves the semantics ambiguous, together with low-level limited control over program execution. These programs, when processed in a CAM system by a machine-specific postprocessor, become machine-dependent. In order to enhance the capability of a CNC machine, CNC contr
28、oller vendors have also developed their own tailored control command sets to add more features to their CNC controllers to extend ISO 6983. These command sets once again vary from vendor to vendor resulting in further incompatible data among the machine tools. The current inflexible CNC control regi
29、me means that the output from a CAM system has no adaptability, which in turn denies the CNC machine tools of having any interoperability. The main reason is that a G-code based part program only contains low-level information that can be described as howto-do information. The CNC machine tools, no
30、matter how capable they are, can do nothing but faithfully follow the Gcode program. It is impossible to perform intelligent control nor machining optimization. 4.The STEP-NC standard Today a new standard namely ISO 14649 11 16 recognised informally as STEP-NC is being developed by vendors, users an
31、d academic institutes world wide to provide a data model for a new breed of intelligent CNCs. The data model represents a common standard specifically aimed at NC programming, making the goal of a standardised CNC controller and NC code generation facility a reality. Currently two versions of STEP-N
32、C are being developed by ISO. The first is the Application Reference Model ARM i.e. ISO 14649 and the other Application Interpreted Model AIM of ISO 14649 i.e. ISO 10303 AP-238 17. For more information on the use and differences between them readers are referred to 18,19. 名师归纳总结 - - - - - - -第 6 页,共
33、 11 页精选学习资料 - - - - - - - - - Contrary to the current NC programming standard ISO 6983, ISO 14649 is not a method for part programming and does not normally describe the tool movements for a CNC machine. Instead, it provides an object oriented data model forCNCs with a detailed and structured data i
34、nterface that incorporates feature-based programming where a range ofinformation is represented such as the features to bemachined, tool types used, the operations to perform, andthe sequence of operations to follow. Though it is possible toclosely define the machine tool trajectory using STEP-NC, t
35、heaim of the standard is to allow these decisions to be made at alatter stage by a new breed of intelligent controllerSTEPNCcontroller. It is the aim that STEP-NC part programs maybe written once and used on many different types of machinetool controller providing the machine has the required proces
36、scapabilities. In doing this, both CNC machine tools and theircontrol programs are made adaptable and interoperable. Fig. 1illustrates that both geometric and machining information cannow be bi-directionally transferred between a CAD/CAMsystem and a STEP-NC controller 20. One critical issue isthat t
37、he tool path movement information is optional andideally should be generated at the machine by the STEP-NCcontroller. Geometric information is defined by machining features similar to AP-224 22 with machining operations termed Workingsteps performed on one or more features. These Workingsteps provid
38、e the basis of a Workplan to manufacture the component. Fig. 2 illustrates an actual extract of such data for a part with aWorkplan consisting ofWorkingsteps for slotting, drilling and pocketing. One important point to note is that this code is the STEP-NC transfer physical file, which is imported/e
39、xported into and out of a STEP-NC intelligent controller. This file would be interpreted by the controller, enabling CNC operators to interact at a Workingstep i.e. machining operation level via an intelligent manual data interface MDI or CAD/CAM system at the controller. Some of the benefits with u
40、sing STEP-NC are as follows 23. STEP-NC provides a complete and structured data model, linked with geometrical and technological information, so that no information is lost between the different stages of the product development process. Its data elements are adequate enough to describe task oriente
41、d NC data. The data model is extendable to further technologies and scalable with conformance classes to match the abilities of a specific CAM, SFP or NC. 名师归纳总结 - - - - - - -第 7 页,共 11 页精选学习资料 - - - - - - - - - Machining time for small to medium sized job lots can be reduced because intelligent opt
42、imisation can be built into the STEP-NC controllers. Post-processor mechanism will be eliminated, as the interface does not require machine-specific information. Machine tools are safer and more adaptable because STEPNC is independent from machine tool vendors. Modification at the shop-floor can be
43、saved and fed back to the design department hence bi-directional information flow from CAD/CAM to CNC machines can be achieved. XML files can be used as an information carrier hence enable Web-based distributed manufacturing. A detailed discussion on value proposition for STEP-NC can be found in a r
44、eport produced by the OMAC STEP-NC Working Group 24 and other publications 20,23,25 . 5.STEP-NC international community In the second half of the 1990s, an effort from the international community backed by ISO started the major change in the concept of NC programming, through an international intell
45、igent manufacturing systems IMS programme 26. The programme was co-ordinated across four worldwide regions each with individual projects namely Europe, Korea, Switzerland and the USA. The major coordinators of the programme are Siemens EU, CADCAMation Switzerland, STEP Tools USA and ERC-ACI Korea. S
46、TEP-NC Europe is responsible for milling, turning and inspection of the ISO 14649 standard. It has 15 partners, led by Siemens, with users such as Daimler Chrysler, Volvo, and the support of research institutes such as WZL RWTH-Aachen and ISW Stuttgart University. The Swiss are leading the development of the 名师归纳总结 - - - - - - -第 8 页,共 11 页精选学习资料 - - - - - - - - - standard for wire-cut and die-sink EDM in collaboration with vendors such as Agie, Starrag and CAM manufacturer CADCAMation. The work in Korea has been carried out by both Pohang University