分数乘除法应用题解题方法.doc

上传人:一*** 文档编号:2777351 上传时间:2020-05-05 格式:DOC 页数:12 大小:69.50KB
返回 下载 相关 举报
分数乘除法应用题解题方法.doc_第1页
第1页 / 共12页
分数乘除法应用题解题方法.doc_第2页
第2页 / 共12页
点击查看更多>>
资源描述

《分数乘除法应用题解题方法.doc》由会员分享,可在线阅读,更多相关《分数乘除法应用题解题方法.doc(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、六年级分数应用题解题方法 解答分数乘法应用题时,可以借助于线段图来分析数量关系。在画线段图时,先画单位“1”的量。一、分数应用题主要讨论的是以下三者之间的关系。1、分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。2、标准量:解答分数应用题时,通常把题目中作为单位“1”的那个数,称为标准量。(也叫单位“1”的数量)3、比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。(也叫分率对应的数量)二、分数应用题的分类。(三类)1、求一个数的几分之几是多少。(解这类应用题用乘法)这类问题特点是已知一个看作单位“1”的数,求它的几分之几是多少,它反映的是整体与部分之间关系

2、的应用题,基本的数量关系是:单位“1”的量分率=分率对应的量。2、已知一个数的几分之几是多少,求这个数。(解这类应用题用除法)这类问题特点是已知一个数的几分之几是多少的数量,求单位“1”的量。基本的数量关系是:分率对应的量分率=单位“1”的量。3、求一个数是另一个数的几分之几。这类问题特点是已知两个数量,比较它们之间的倍数关系,解这类应用题用除法。基本的数量关系是:比较量 标准量 = 分率。在分数应用题教学中,我认为它的难点,表现在两个方面:一是正确找出或选准标准量,即要求学生会理解题意,抓住题目中的数量关系的内在规律。二是选准“对应量”即找出要求的数量或已知的数量是标准量的几分之几?(“对应

3、量”指的是与单位“1”分率相互对应的具体数量)。三、分数应用题的基本训练。1、正确审题训练。正确审题是正确解题的前提。这里所说的审题,首先是根据题中的分率句,能准确分清比较量和单位“1”的量(看分率是谁的几分之几,谁就是单位“1”的量)。判断单位“1”的量:知道单位“1”的量(用乘法),未知道单位“1”的量(用除法),为确定解题方法奠定基础;其次会把“比”字句转化成“是”字句;第三是能将省略式的分率句换说成比较详细的句子的能力。 2、画线段图的训练。线段图有直观、形象等特点。按题中的数量比例,恰当选用实线或虚线把已知条件和问题表示出来,数形结合,有利于确定解题思路。3、量、率对应关系训练。量、

4、率对应关系的训练是解较复杂分数应用题的重要环节。通过训练,能根据应用题的已知条件发挥联想,找出各种量、率间接对应关系,为正确解题铺平道路。如:一批货物,第一次运走总数的,第二次运走总数的,还剩下143吨。则量、率对应关系有:(1)把货物的总重量看做是:单位“1” (2)第一次运走的占总重量的: (3)第二次运走的占总重量的: (4)两次共运走的占总重量的:+ (5)第一次比第二次少运走的占总重量的: (6)第一次运走后剩下的占总重量的:1(7)第二次运走后剩下的占总重量的:1 (8)剩下143吨(数量)占总重量的:1 (分率)4、转化分率训练。在解较复杂的分数应用题时,常需要将间接分率转化为直

5、接运用于解题的分率。(1)已修总长的,则未修是总长的:1 = ;(2)今年比去年增产,则今年产量是去年:1 + = 1;(3)第一次运走总数的,第二次运走剩下的,则第二次运走的是总数的 (1 ) = 。5、由分率句到数量关系式训练。“由分率句列数量关系式”是确保正确列式解题的训练。如:由“男生比女生少”, 可列数量关系式:(1)女生人数 (1 )= 男生人数;(2)女生人数= 男生比女生少的人数;(3)男生人数 (1 )= 女生人数;(4)男生比女生少的人数= 女生人数。四、分析解答实际的应用题。第一类1、求一个数的几分之几是多少。单位“1”的量(分率)=分率对应的量。例1:学校买来100千克

6、白菜,吃了 ,吃了多少千克?(反映整体与部分之间的关系)白菜的总重量 = 吃了的重量100 = 80 (千克)答:吃了80千克。例2:一个排球定价60元,篮球的价格是排球的。篮球的价格是多少元? 排球的价格 = 篮球的价格60 = 50 (元)答:篮球的价格是50元。例3:小红体重42千克,小云体重40千克,小新体重相当于小红和小云体重总和的 。小新体重是多少千克?(两个数量的和做为单位“1”的量)(小红体重 + 小云体重) = 小新体重(42 +40) = 41 (千克)答:小新体重41千克。例4:有一摞纸,共120张。第一次用了它的 ,第二次用了它的 ,两次一共用了多少张纸?(所求数量对应

7、的分率是两个分率的和)纸的总张数( + )= 两次共用的张数120( + )=92(张)答:两次共用92张。例5:国家一级保护动物野生丹顶鹤,2001年全世界约有2000只,我国占其中的,其它国家约有多少只?(所求数量对应的分率没有直接告诉我们,要先求)野生丹顶鹤的总只数(1 )= 其它国家的只数2000(1 )= 1500(只)答:其它国家约有1500只。例6:小亮储蓄箱中有18元,小华储蓄的钱是小亮的 ,小新储蓄的钱是小华的 。小新储蓄多少钱?(有两个单位“1”的量且都已知)小亮储蓄的钱 = 小新储蓄的钱18 = 10(元)答:小新储蓄10元。2、求比一个数多几分之几多多少。单位“1”的量

8、(分率)=多多少(分率对应的量)。例1:人的心脏跳动的次数随着年龄而变化。青少年每分钟约跳75次,婴儿每分钟心跳的次数比青少年多。婴儿每分钟心跳比青少年多多少次?(所求数量和已知分率直接对应。) 青少年每分钟心跳次数=婴儿每分钟心跳比青少年多跳次数75 = 60(次)答:婴儿每分钟心跳比青少年多跳60次。3、求比一个数多几分之几是多少。单位“1”的量(1+ )(分率)=是多少(分率对应的量)。例1:人的心脏跳动的次数随着年龄而变化。青少年每分钟约跳75次,婴儿每分钟心跳的次数比青少年多。婴儿每分钟心跳多少次?(需将分率转化成所求数量对应的分率。) 青少年每分钟心跳次数 (1 + )=婴儿每分钟

9、心跳的次数75 (1 + )=135(次)答:婴儿每分钟心跳135次。例2:学校有20个足球,篮球比足球多 ,篮球有多少个?(需将分率转化成所求数量对应的分率。) 足球的个数(1+ )=篮球的个数20(1+ )=25(个)答:篮球有25个。4、求比一个数少几分之几少多少。单位“1”的量(分率)=少多少(分率对应的量)。例1:学校有20个足球,篮球比足球少 ,篮球比足球少多少个? (所求数量和已知分率直接对应。) 足球的个数 = 篮球比足球少的个数20= 4(个)答:篮球比足球少4个。5、求比一个数少几分之几是多少。单位“1”的量(1- )(分率)=是多少(分率对应的量)。例1:学校有20个足球

10、,篮球比足球少 ,篮球有多少个?(需将分率转化成所求数量对应的分率。) 足球的个数(1 )=篮球的个数20(1 )=16(个)答:篮球有16个。例2:一种服装原价105元,现在降价,现在售价多少元?(需将分率转化成所求数量对应的分率。) 服装的原价(1 )= 现在售价105(1 )=75(元)答:现在售价是75元。第二类1、已知一个数的几分之几是多少,求这个数。(分率对应的量)(分率)=单位“1”的量。例1:一个儿童体内所含水分有28千克,占体重的。这个儿童的体重有多少千克?(反映整体与部分之间的关系) 体内水分的重量 =体重 28 = 35(千克)答:这个儿童体重35千克。例2:裤子价格是7

11、5元,是上衣的。上衣多少元?裤子的单价=上衣的单价75= (元)答:一件上衣112元。例3:水果店运一批水果。第一次运了50千克,第二次运了70千克,两次正好运了这批水果的。这批水果有多少千克?(两个已知数量的和所对应的分率。)(第一次运的重量+第二次运的重量)= 这批水果的重量(50+70)=480(千克)答: 这批水果480千克。例4:一辆汽车从甲地开往乙地,第一小时行了全程的,第二小时行了全程的,两小时行了114千米。两地之间的公路长多少千米?(已知数量对应的分率是两个分率的和。) 两小时行的路程(+ )=两地之间的公路长度114(+ )=216(千米)答:两地之间的公路长216千米。

12、例5:一桶水,用去它的,正好是15千克。这桶水重几千克?(已知数量和分率直接对应。) 用去的重量=这桶水的总重量 15=20(千克)答:这桶水重20千克。例6:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?(已知数量和分率不直接对应。) 剩下的重量(1 )= 买来大米的重量15(1 )= 40(千克)答: 买来大米40千克。例7:光明小学航模小组有8人,航模小组是生物小组的,生物小组的人数是美术小组的。美术小组有多少人?(有两个单位“1”的量且都未知。)航模小组的人数= 生物小组的人数8= 30(人)答:生物小组有30人。例8:商店运来一些水果,运来苹果20筐,梨的筐数是苹果的,梨

13、的筐数又是橘子的。运来橘子多少筐?(有两个单位“1”的量,一个已知,一个未知。)苹果筐数= 橘子的筐数20= 25(筐)答:橘子有25 筐。2、已知一个数比另一个数多几分之几多多少,求这个数。多多少(分率对应的量)(分率)= 单位“1”的量。例1:某工程队修筑一条公路。第一周修了这段公路的,第二周修筑了这段公路的,第二周比第一周多修了2千米。这段公路全长多少千米?(需要找相差数量对应的分率。) 第二周比第一周多修的千米数( )= 公路的全长 2( )=56(千米)答:这段公路全长56千米。3、已知一个数比另一个数多几分之几是多少,求这个数。是多少(分率对应的量)(1+)(分率)=单位“1”的量

14、。例1:学校有20个足球,足球比篮球多 ,篮球有多少个?(需将分率转化成所求数量对应的分率。) 足球的个数(1+ )=篮球的个数20(1+ )=16(个)答:篮球有16个。4、已知一个数比另一个数少几分之几少多少,求这个数。少多少(分率对应的量)(分率)=单位“1”的量。例1:某工程队修筑一条公路。第一天修了38米,第二天了42米。第一天比第二天少修的是这条公路全长的。这条公路全长多少米?(需要找相差分率对应的数量。)第一天比第二天少修的米数= 公路的全长(42 38)=112(米)答:这段公路全长112米。5、已知一个数比另一个数少几分之几是多少,求这个数。是多少(分率对应的量)(1 )(分

15、率)=单位“1”的量例1:学校有20个足球,足球比篮球少 ,篮球有多少个?(需将分率转化成所求数量对应的分率) 足球的个数(1)=篮球的个数20(1)=25(个)答:篮球有25个。6、较复杂的分数应用题。例1:学校食堂九月份用煤气640立方分米,十月份计划用煤气是九月份的,而十月份实际用煤气比原计划节约。十月份比原计划节约用煤气多少立方分米?(明确题中的三个数量,把那两个数量看做单位“1”,所求数量对应的分率。)九月份用煤气的体积= 十月份比原计划节约用煤气的体积640=144(立方分米)答:十月份比原计划节约用煤气144立方分米。第三类求一个数是另一个数的几分之几。1、求一个数是另一个数的几

16、分之几。比较量标准量=分率(几分之几)。例1:学校的果园里有梨树15棵,苹果树20棵。梨树的棵数是苹果树的几分之几?(找准标准量。) 梨树的棵数苹果树的棵数 =梨树的棵数是苹果树的几分之几1520 = 答:梨树的棵数是苹果树的。例2:学校的果园里有梨树15棵,苹果树20棵。苹果树的棵数是梨树的几倍?(找准标准量。) 苹果树的棵数梨树的棵数 =梨树的棵数是苹果树的几倍2015= ( )答:苹果树的棵数是梨树的( )倍。2、求一个数比另一个数多几分之几。相差量标准量=分率(多几分之几)。例1:学校的果园里有梨树15棵,苹果树20棵。苹果树的棵数比梨树多几分之几?(相差量是比较量。)苹果树比梨树多的棵数 梨树树的棵数=多几分之几(2015)15 = 答:苹果树的棵数比梨树多。 3、求一个数比另一个数少几分之几。相差量标准量=分率(少几分之几)。例1:学校的果园里有梨树15棵,苹果树20棵。梨树的棵数比苹果树少几分之几?(相差量是比较量。)梨树比苹果树少的棵数苹果树的棵数 =少几分之几(2015)20= 答:梨树的棵数比苹果树少。(分数应用题是小学阶段非常重要的知识,在毕业考试120分中所占的分数值非常大,同学们一定牢牢掌握,为自己的未来增色添彩。希望同学们树立目标,端正态度,学会自学,最后愿大家取得好成绩)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁