《函数值域的求法资料大全.doc》由会员分享,可在线阅读,更多相关《函数值域的求法资料大全.doc(32页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、.函数值域的求法大全题型一求函数值:特别是分段函数求值例1已知f(x)(xR,且x1),g(x)x22(xR).(1)求f(2),g(2)的值;(2)求fg(3)的值.解(1)f(x),f(2).又g(x)x22,g(2)2226.(2)g(3)32211,fg(3)f(11).反思与感悟求函数值时,首先要确定出函数的对应关系f的具体含义,然后将变量代入解析式计算,对于fg(x)型的求值,按“由内到外”的顺序进行,要注意fg(x)与gf(x)的区别.跟踪训练4已知函数f(x).(1)求f(2);(2)求ff(1).解(1)f(x),f(2).(2) f(1),ff(1)f().5.已知函数f(
2、x)x2x1.(1)求f(2),f();(2)若f(x)5,求x的值.解(1)f(2)22215,f()1.(2)f(x)x2x15,x2x60,x2,或x3.(3)4.函数f(x)对任意自然数x满足f(x1)f(x)1,f(0)1,则f(5)_.答案6解析f(1)f(0)1112,f(2)f(1)13,f(3)f(2)14,f(4)f(3)15,f(5)f(4)16.二、值域是函数y=f(x)中y的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法
3、 (9)复合函数法 (10)不等式法 (11)平方法等等这些解题思想与方法贯穿了高中数学的始终。 求值域问题利用常见函数的值域来求(直接法)一次函数y=ax+b(a0)的定义域为R,值域为R;反比例函数的定义域为x|x0,值域为y|y0;二次函数的定义域为R,当a0时,值域为;当a0,=,当x0时,则当时,其最小值; 当a0)时或最大值(a0)时, 再比较的大小决定函数的最大(小)值. 若a,b,则a,b是在的单调区间内,只需比较的大小即可决定函数的最大(小)值.注:若给定区间不是闭区间,则可能得不到最大(小)值;当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论.练习
4、:1、求函数y=3+的值域 解:由算术平方根的性质,知0,故3+3。函数的值域为. 2、求函数 的值域 解: 对称轴 1 单调性法例3 求函数y=4x(x1/3)的值域。设f(x)=4x,g(x)= ,(x1/3),易知它们在定义域内为增函数,从而y=f(x)+g(x)=4x-在定义域为x1/3上也为增函数,而且yf(1/3)+g(1/3)=4/3,因此,所求的函数值域为y|y4/3。小结:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域。练习:求函数y=3+的值域。(答案:y|y3)2 换元法例4 求函数
5、 的值域 解:设,则 点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域。这种解题的方法体现换元、化归的思想方法。它的应用十分广泛。练习:求函数y=的值域。(答案:y|y3/4 求的值域;例5 (三角换元法)求函数的值域解: 设 小结:(1)若题目中含有,则可设 (2)若题目中含有则可设,其中(3)若题目中含有,则可设,其中(4)若题目中含有,则可设,其中 (5)若题目中含有,则可设其中3 平方法例5 (选)求函数 的值域解:函数定义域为: 4 分离常数法 例6 求函数 的值域由 ,可得值域小结:已知分式函数,如果在其自然定义域(代数式自身对变量的要求
6、)内,值域为;如果是条件定义域(对自变量有附加条件),采用部分分式法将原函数化为,用复合函数法来求值域。练习求函数 的值域 求函数 的值域 求函数 y=的值域;(y(-1,1)) 例7 求 的值域解法一:(图象法)可化为 如图, 观察得值域解法二:(不等式法) 同样可得值域练习:的值域 例8 求函数 的值域解:(换元法)设 ,则 原函数可化为 例9求函数 的值域 解:(换元法)令,则 由指数函数的单调性知,原函数的值域为 例10 求函数 的值域解:(图象法)如图,值域为 (换元法)设 ,则 例13 函数 的值域解法一:(逆求法) 2解法二:(换元法)设 ,则 解法三:(判别式法)原函数可化为
7、1) 时 不成立2) 时,综合1)、2)值域解法四:(三角换元法)设,则 原函数的值域为例14 求函数的值域5解法一:(判别式法)化为1)时,不成立2)时,得综合1)、2)值域解法二:(复合函数法)令,则 所以,值域例15 函数的值域解法一:(判别式法)原式可化为 解法二:(不等式法)1)当时,2) 时,综合1)2)知,原函数值域为例16 (选) 求函数的值域解法一:(判别式法)原式可化为 解法二:(不等式法)原函数可化为 当且仅当时取等号,故值域为例17 (选) 求函数的值域解:(换元法)令 ,则原函数可化为。小结:已知分式函数 ,如果在其自然定义域内可采用判别式法求值域;如果是条件定义域,
8、用判别式法求出的值域要注意取舍,或者可以化为(选)的形式,采用部分分式法,进而用基本不等式法求出函数的最大最小值;如果不满足用基本不等式的条件,转化为利用函数的单调性去解。利用判别式求值域时应注意的问题用判别式法求值域是求函数值域的常用方法,但在教学过程中,很多学生对用判别式求值域掌握不好。一是不理解为什么可以这样做,二是学生对哪些函数求值域可以用判别式法,哪些函数不能也比较模糊。本人结合自己的教学实践谈谈对本内容的一点体会。一、判别式法求值域的理论依据例1、 求函数的值域象这种分子、分母的最高次为2次的分式函数可以考虑用判别式法求值域。解:由得:(y-1)x2+(1-y)x+y=0 上式中显
9、然y1,故式是关于x的一元二次方程用判别式法求函数的值域是求值域的一种重要的方法,但在用判别式法求值域时经常出错,因此在用判别式求值域时应注意以下几个问题:一、要注意判别式存在的前提条件,同时对区间端点是否符合要求要进行检验例:求函数的值域。错解:原式变形为 (),解得。故所求函数的值域是错因:把代入方程()显然无解,因此不在函数的值域内。事实上,时,方程()的二次项系数为0,显然不能用“”来判定其根的存在情况。正解:原式变形为 ()(1)当时,方程()无解;(2)当时,解得。综合(1)、(2)知此函数的值域为二、注意函数式变形中自变量的取值范围的变化例2:求函数的值域。错解:将函数式化为(1
10、)当时,代入上式得,故属于值域;(2)当时, ,综合(1)、(2)可得函数的值域为。错因:解中函数式化为方程时产生了增根(与虽不在定义域内,但是方程的根),因此最后应该去掉与时方程中相应的值。所以正确答案为,且。三、注意变形后函数值域的变化例3:求函数的值域。错解:由已知得 ,两边平方得 整理得,由,解得。故函数得值域为。错因:从式变形为式是不可逆的,扩大了的取值范围。由函数得定义域为易知,因此函数得最小值不可能为。时,故函数的值域应为。四、注意变量代换中新、旧变量取值范围的一致性例4:求函数的值域。错解:令,则,由及得值域为。错因:解法中忽视了新变元满足条件。设,。故函数得值域为。综上所述,
11、在用判别式法求函数得值域时,由于变形过程中易出现不可逆得步骤,从而改变了函数得定义域或值域。因此,用判别式求函数值域时,变形过程必须等价,必须考虑原函数得定义域,判别式存在的前提,并注意检验区间端点是否符合要求。 练习:1 、;解:x0,y11.另外,此题利用基本不等式解更简捷:(或利用对勾函数图像法)2 、0y5.3 、求函数的值域; 解:令0,则,原式可化为,u0,y,函数的值域是(-,.解:令 t=4x-0 得 0x4 在此区间内 (4x-)=4 ,(4x-) =0函数的值域是 y| 0y24、求函数y=|x+1|+|x-2|的值域. 解法1:将函数化为分段函数形式:,画出它的图象(下图
12、),由图象可知,函数的值域是y|y3.解法2:函数y=|x+1|+|x-2|表示数轴上的动点x到两定点-1,2的距离之和,易见y的最小值是3,函数的值域是3,+. 如图 5、求函数的值域解:设 则 t0 x=1-代入得 t0 y46、(选)求函数的值域方法一:去分母得 (y-1)+(y+5)x-6y-6=0 当 y1时 xR =(y+5)+4(y-1)6(y+1)0由此得 (5y+1)0检验 (有一个根时需验证)时 (代入求根)2 定义域 x| x2且 x3 再检验 y=1 代入求得 x=2 y1综上所述,函数的值域为 y| y1且 y方法二:把已知函数化为函数 (x2) 由此可得 y1, x
13、=2时即 函数的值域为 y| y1且 y函数值域求法十一种 1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。 例1. 求函数的值域。解:显然函数的值域是: 例2. 求函数的值域。解:故函数的值域是: 2. 配方法配方法是求二次函数值域最基本的方法之一。 例3. 求函数的值域。解:将函数配方得:由二次函数的性质可知:当x=1时,当时,故函数的值域是:4,8 3. 判别式法 例4. 求函数的值域。解:原函数化为关于x的一元二次方程(1)当时,解得:(2)当y=1时,而故函数的值域为 例5. 求函数的值域。解:两边平方整理得:(1)解得:但此时的函数的定义域由,得由,仅保证关于x的方程
14、:在实数集R有实根,而不能确保其实根在区间0,2上,即不能确保方程(1)有实根,由 求出的范围可能比y的实际范围大,故不能确定此函数的值域为。可以采取如下方法进一步确定原函数的值域。代入方程(1)解得:即当时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。 4. 反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。 例6. 求函数值域。解:由原函数式可得:则其反函数为:,其定义域为:故所求函数的值域为: 5. 函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域
15、。 例7. 求函数的值域。解:由原函数式可得:解得:故所求函数的值域为 例8. 求函数的值域。解:由原函数式可得:,可化为:即即解得:故函数的值域为 6. 函数单调性法 例9. 求函数的值域。解:令则在2,10上都是增函数所以在2,10上是增函数当x=2时,当x=10时,故所求函数的值域为: 例10. 求函数的值域。解:原函数可化为:令,显然在上为无上界的增函数所以,在上也为无上界的增函数所以当x=1时,有最小值,原函数有最大值显然,故原函数的值域为 7. 换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函
16、数的值域中同样发挥作用。 例11. 求函数的值域。解:令,则又,由二次函数的性质可知当时,当时,故函数的值域为 例12. 求函数的值域。解:因即故可令故所求函数的值域为 例13. 求函数的值域。解:原函数可变形为:可令,则有当时,当时,而此时有意义。故所求函数的值域为 例14. 求函数,的值域。解:令,则由且可得:当时,当时,故所求函数的值域为。 例15. 求函数的值域。解:由,可得故可令当时,当时,故所求函数的值域为: 8. 数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。 例16. 求函数的值域
17、。解:原函数可化简得:上式可以看成数轴上点P(x)到定点A(2),间的距离之和。由上图可知,当点P在线段AB上时,当点P在线段AB的延长线或反向延长线上时,故所求函数的值域为: 例17. 求函数的值域。解:原函数可变形为:上式可看成x轴上的点到两定点的距离之和,由图可知当点P为线段与x轴的交点时,故所求函数的值域为 例18. 求函数的值域。解:将函数变形为:上式可看成定点A(3,2)到点P(x,0)的距离与定点到点的距离之差。即:由图可知:(1)当点P在x轴上且不是直线AB与x轴的交点时,如点,则构成,根据三角形两边之差小于第三边,有即:(2)当点P恰好为直线AB与x轴的交点时,有综上所述,可
18、知函数的值域为:注:由例17,18可知,求两距离之和时,要将函数式变形,使A、B两点在x轴的两侧,而求两距离之差时,则要使A,B两点在x轴的同侧。如:例17的A,B两点坐标分别为:(3,2),在x轴的同侧;例18的A,B两点坐标分别为(3,2),在x轴的同侧。 9. 不等式法利用基本不等式,求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时需要用到拆项、添项和两边平方等技巧。 例19. 求函数的值域。解:原函数变形为:当且仅当即当时,等号成立故原函数的值域为: 例20. 求函数的值域。解:当且仅当,即当时,等号成立。由可得:故原函数的值域为: 10. 一一映
19、射法原理:因为在定义域上x与y是一一对应的。故两个变量中,若知道一个变量范围,就可以求另一个变量范围。 例21. 求函数的值域。解:定义域为由得故或解得故函数的值域为 11. 多种方法综合运用 例22. 求函数的值域。解:令,则(1)当时,当且仅当t=1,即时取等号,所以(2)当t=0时,y=0。综上所述,函数的值域为:注:先换元,后用不等式法 例23. 求函数的值域。解:令,则当时,当时,此时都存在,故函数的值域为注:此题先用换元法,后用配方法,然后再运用的有界性。总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。