《2022年完整word版,七年级数学下册知识点总结北师大版.docx》由会员分享,可在线阅读,更多相关《2022年完整word版,七年级数学下册知识点总结北师大版.docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选学习资料 - - - - - - - - - 七年级下册学问点总结第一章 整式的乘除1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式;单独的一个数或一个字母也是单项式;单项式 的数字因数叫做单项式的系数,字母指数和叫单项式的次数;如:2a2bc的系数为2 ,次数为 4,单独的一个非零数的次数是0;2、多项式:几个单项式的和叫做多项式;多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次 数;如:a22abx1,项有2 a 、2 ab、x、1,二次项为2 a 、2 ab,一次项为x,常数项为1,各项次数分别为 2,2,1,0,系数分别为1,-2 ,1,1,叫二次四项式;3、整
2、式:单项式和多项式统称整式;留意:凡分母含有字母代数式都不是整式;也不是单项式和多项式;4、同底数幂的乘法法就:am.anamn(m,n都是正整数)同底数幂相乘,底数不变,指数相加;如:ab2.ab3ab 5留意: 底数可以是多项式或单项式;5、幂的乘方法就:m a namn(m,n都是正整数)幂的乘方,底数不变,指数相乘;如:35210 3幂的乘方法就可以逆用:即amnamnanm如:46423432( n 是正整数)6、积的乘方法就:abnanbn积的乘方,等于各因数乘方的积;如:(2x3y2z 5=25.x35.y25n.z5432x15y10z53mn7、同底数幂的除法法就:amana
3、m(a0,m ,n都是正整数,且同底数幂相除,底数不变,指数相减;如:ababab3a3b8、零指数和负指数;a01,即任何不等于零的数的零次方等于1;p 次方等于这个数的p 次方的倒数;1(a0 ,p是正整数),即一个不等于零的数的ap2ap如:313128- 1 - 名师归纳总结 - - - - - - -第 1 页,共 12 页精选学习资料 - - - - - - - - - 9、科学记数法:如:0.00000721=7.21106(第一个非零数字前零的个数)10、单项式的乘法法就:单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数 不变,作为积的因式;留意:积
4、的系数等于各因式系数的积,先确定符号,再运算确定值;相同字母相乘,运用同底数幂的乘法法就;只在一个单项式里含有的字母,就连同它的指数作为积的一个因式 单项式乘法法就对于三个以上的单项式相乘同样适用;单项式乘以单项式,结果仍是一个单项式;如:2x2y3z. xy11、单项式乘以多项式,就是依据安排律用单项式去乘多项式的每一项,再把所得的积相加,即m abcmambmcm ,a,b,c都是单项式 留意:积是一个多项式,其项数与多项式的项数相同;运算时要留意积的符号,多项式的每一项都包括它前面的符号;在混合运算时,要留意运算次序,结果有同类项的要合并同类项;如:2x2x3y3yxy12、多项式与多项
5、式相乘的法就;多项式与多项式相乘,先用多项式的每一项乘另一个多项式的每一项,再把所的的积相加;如:3a52 ba3 bbaba2b2留意:平方差公式绽开只有两项(应用与说明)xx6 a13、平方差公式:公式特点:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;右边是相同项的 平方减去相反项的平方;如:xyz xyaz 2a22abb2(应用与说明)14、完全平方公式:b15、单项式的除法法就:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,就连同它的指数一起 作为商的一个因式;留意: 第一确定结果的系数(即系数相除),然后同底数幂相除,
6、假如只在被除式里含有的字母,就连同它的指 数作为商的一个因式如:7a2b4m49a2b16、多项式除以单项式的法就:多项式除以单项式,先把这个多项式的每一项除以这个单项式,在把所的的商相加;即:ambmcm mammbmmcmmabc- 2 - 名师归纳总结 - - - - - - -第 2 页,共 12 页精选学习资料 - - - - - - - - - 其次章相交线与平行线 一、两直线的位置关系 1、两条直线的位置关系 在同一平面内,两条直线的位置关系只有两种:相交;平行(表示符号“ ” )因此当我们得知在同一平面内两直线不相交时,就可以确定它们平行;反过来也一样(这里,我们把重合的两直
7、线看成一条直线)判定同一平面内两直线的位置关系时,可以依据它们的公共点的个数来确定:有且只有一个公共点,两直线相交;无公共点,就两直线平行;两个或两个以上公共点,就两直线重合(由于两点确定一条直线)2、对顶角: 我们把两条直线相交所构成的四个角中,有公共顶点且角的两边互为反向延长线的两个角叫做对顶角;对顶角的性质:对顶角相等;A C B 3、余角: 定义:假如两个角的和是90 0,那么称这两个角互为余角;性质: 同角或等角的余角相等;4、补角: 定义:假如两个角的和是180 0,那么称这两个角互为补角;性质: 同角或等角的补角相等;(明白邻补角)O 5、垂线定义: 当两条直线相交所成的四个角中
8、,有一个角是直角时,就说这两条直线相互垂直,D 其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足表示符号“ ” ;符号语言记作 :如下列图: ABCD,垂足为O: P 性质 1:过一点有且只有一条直线与已知直线垂直性质2:直线外一点与直线上各点连接的全部线段中,垂线段最短;简称:垂线段最短;7、垂线的画法:A O B 过直线上一点画已知直线的垂线;过直线外一点画已知直线的垂线;留意:画一条线段或射线的垂线,就是画它们所在直线的垂线;过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上;垂线的画法(以线段外过一点做线段的垂线,垂足不在线段上为例)用直角三角板画垂线,可简洁地说成:“
9、一落” 、“ 二过” 、“ 三画” 、“ 四标” 如图 1,线段 BC,过点 A作线段 BC的垂线,垂足为点 D. 图1 “ 一落” :将三角板一条直角边紧贴已知直线上 . 我们要过点 A作线段 BC的垂线,获得垂线段 AD,可先用三角板的一条直角边与 BC重合在一起,另一条直角边落在点 A的同一侧;不盖住点 A 如图 2 “ 二过” :使三角板的另始终角边经过已知点用铅笔尖点住 A点,使三角板保持与 BC重合,沿线段 BC渐渐移动,到三角板的另始终角边刚好靠近点 A铅笔尖 时停下来; 如图 3 图2 图3 图4 “ 三画” :沿已知点所在直角边画直线- 3 - 名师归纳总结 - - - -
10、- - -第 3 页,共 12 页精选学习资料 - - - - - - - - - 按紧平移后的三角板,用铅笔从A点开头沿这条直角边画直线,很明显这条直线不与线段BC相交,于是我们只需把 BC延长 或反向延长 与这条直线相交 如图 4 “ 四标” :标出直角标号“ ”由画出的延长线与作的直线相交而获得了垂足,我们可在交点处标上垂直符号“ ” ,并标上字母符号 “ D“ 如图 4 到此,垂线段 AD便作出了8、点到直线的距离 直线外一点到这条直线的垂线段的长度,叫做 点到直线的距离 如图, POAB,同 P 到直线 AB的距离是 PO的长; PO是垂线段; PO是点 P到直线 AB全部线段中最短
11、的一条;注 意: 距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同;现实生活中开沟引水,牵牛喝水都是“ 垂线段最短” 性质的应用;二、两只线平行的条件1、同位角、内错角、同旁内角:同位角是“A” 型;内错角是“Z” 型;同旁内角是“U” 型8 个角 ;(三线八角)两条直线被第三条直线所截,形成了同位角 :两个角都在两条直线的同侧,并且在第三条直线(截线)的同旁,这样的一对角叫做同位角;内错角 :两个角都在两条直线之间,并且在第三条直线(截线)的两旁,这样的一对角叫做内错角;同旁内角 :两个角都在两条直线之间,并且在第三条直线(截线)的同旁,这样的一对角叫同旁内角;2、平行线的判定:
12、留意:几何中,图形之间的“ 位置关系” 一般都与某种“ 数量关系” 有着内在的联系 两条直线被第三条直线所截,假如同位角相等,那么两直线平行;简称:同位角相等,两直线平行;两条直线被第三条直线所截,假如内错角相等,那么两直线平行;简称:内错角相等,两直线平行;两条直线被第三条直线所截,假如同旁内角互补,那么两直线平行;简称:补充平行线的判定方法:同旁内角互补,两直线平行;( 1)平行线的定义: 假如两条直线没有交点 几何符号语言 : 3 2 AB CD(同位角相等,两直线平行)(不相交) ,那么两直线平行 (2)平行于同一条直线的两直线平行;E A 1 3 4 B 1 2 AB CD(内错角相
13、等,两直线平行)C F 2 D 4 2180 AB CD(同旁内角互补,两直线平行)请同学们留意书写的次序以及前因后果,平行线的判定是由角相等,然后得出平行;平行线的判定是写角相等,然后写平行;3、平行线的画法:利用三角板的平移画平行线,其画法可以总结为:“ 一落” 、“ 二靠” 、“ 三移” 、“ 四画”. 一落:三角板的一边落在已知直线;二靠:靠紧三角板的另一边放上另一块三角板;三移:使第一块三角板沿着其次块三角板移动,使其经过原直线的一边经过已知点;四画:沿三角板过已知点的一边画出直线. 这时所画直线就肯定与已知直线平行. 4、平行公理平行线的存在性与惟一性经过直线外一点,有且只有一条直
14、线与这条直线平行 与垂直公理相比较记5、平行线的性质:- 4 - 名师归纳总结 - - - - - - -第 4 页,共 12 页精选学习资料 - - - - - - - - - ( 1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补;6、平行公理的推论:假如两条直线都与第三条直线平行,那么这两条直线也相互平行a bc如右图所示,b a , c a b c留意符号语言书写,前提条件是两直线都平行于第三条直线,才会有结论:这两条直线都平行;7、用尺规作角(利用尺规作图比较角的大小)尺规作图: 在几何里,只用没有刻度的直尺和圆规作图称为尺规作图;尺规作图是最基
15、本、最常见的作图方法,通常叫基本作图;即: 1、作一条线段等于已知线段;2、作一个角等于已知角如上如下列图,求作一个角等于已知角AOB作法:(1)作射线OA;(2)以 O为圆心,以任意长为半径作弧,交 OA于点 C,交 OB于点 D;( 3)以 O为圆心,以 OC为半径作弧,交 OB 于点 D ;( 4)以点 D 为圆心,以 CD为半径作弧,交前面的弧于点 C ;( 5)过 C 作射线 OA AOB 就是所求作的角第三章 变量之间的关系1、变量、自变量、因变量、常量变量: 在某一变化过程中,不断变化的量叫做变量;自变量、因变量:假如一个变量y 随另一个变量x 的变化而变化,就把x 叫做自变量,
16、 y 叫做因变量;留意:变量:在某一过程中发生变化的量,其中包括自变量与因变量;自变量是最初变动的量,它在争论对象反应形式、特点、目的上是独立的;因变量是由于自变量变动而引起变动的量,它“ 依靠于” 自变量的转变;常量 :一个变化过程中数值始终保持不变的量叫做常量 . 2、函数的三种表示方法:( 1)列表法(用表格)上自下因采纳数表相结合的形式,运用表格可以表示两个变量之间的关系;列表时要选取能代表自变量的一些数据,并按从小到大的次序列出,再分别求出因变量的对应值;列表法最大的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分;( 2)解析法(关系
17、式)后自前因关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以依据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值( 3)图像法(用图象)横自纵因对于在某一变化过程中的两个变量,把自变量x 与因变量 y 的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出这些点,这些点所组成的图形就是它们的图象(这个图象就叫做平面直角坐标系);它是我们所表示 两个变量之间关系的另一种方法,它的显著特点是特别直观;不足之处是所画的图象是近似的、局部的,通过观 察或由图象所确定的因变量的值往往是不精确的;表示的步骤是:列表:列表给出自变量与因变量的一些特殊 的对应值
18、;一般给出的数越多,画出的图象越精确;描点:在用图象表示变量之间的关系时,通常用水平方向的数轴(横轴或x 轴)上的点来表示自变量,用竖直方向的数轴(纵轴或y 轴)上的点来表示因变量;连线:依据自变量从小到大的次序,用平滑的曲线把所描的各点连结起来;3、懂得图像: a. 仔细懂得图象的含义,留意挑选一个能反映题意的图象;上特殊点的含义(坐标),特殊是图像的起点、拐点、交点 4、事物变化趋势的描述 对事物变化趋势的描述一般有两种:- 5 - b. 从横轴和纵轴的实际意义懂得图象名师归纳总结 - - - - - - -第 5 页,共 12 页精选学习资料 - - - - - - - - - 1 随着
19、自变量x 的逐步增加(大),因变量y 逐步增加(大)(或者用函数语言 描述也可:因变量y 随着自变量 x 的增加(大)而增加(大);2 随着自变量 x 的逐步增加(大),因变量 y 逐步减小(或者用 函数语言 描述也可:因变量 y 随着自变量 x 的增加(大)而减小). 留意:假如在整个过程中事物的变化趋势不一样,可以采纳分段描述 . 例如在什么范畴内随着自变量 x 的逐步增加(大),因变量 y 逐步增加(大)等等 . 5、估量(或者估算)对事物的估量(或者估算)有三种:1. 利用事物的变化规律进行估量(或者估算). 例如:自变量 x 每增加肯定量,因变量 y 的变化情形;平均每次(年)的变化
20、情形(平均每次的变化量 =(尾数首数)/ 次数或相差年数)等等;2. 利用图象:第一依据如干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量 y 的值;3. 利用关系式:第一求出关系式,然后直接代入求值即可 . - 6 - 名师归纳总结 - - - - - - -第 6 页,共 12 页精选学习资料 - - - - - - - - - 优缺点比较;列表法优 点缺 点,备 注对于表中自变量的每一个值可以不只能列出部分自变量与因变量的对通常自变量表示在表格的上方,因应值 , 难以反映变量间的变化全貌通过运算 , 直接把因变量的值找到,而且从表中看不出变量间的对应规变量表示在表格的下方
21、查询时很便利律解析法简明扼要 , 规范精确有些变量之间的关系很难或不能用通常自变量表示在式子的右边,因关系式表示 , 求对应值也需要逐个变量表示在式子的左边运算 , 比较麻烦图象法形象直观 , 可以很形象地反映事物变图象是近似的 , 局部的 , 观看或由图通常自变量用水平方向的数轴(横化的全过程 , 变化的趋势和某些性质象确定的因变量的值往往是不精确轴)上的点来表示,因变量用竖直 因变量的增减性, 点的对称 , 最大值的方向的数轴(纵轴)上的点来表示或最小值 等第四章三角形一、三角形及其有关概念1、三角形: 由不在同始终线上的三条线段首尾顺次相接所组成的图形叫做三角形;组成三角形的线段叫做三角
22、形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角;2、三角形的表示:三角形用符号“” 表示,顶点是A、B、C的三角形记作“ABC” ,读作“ 三角形ABC” ;3、三角形的三边关系:( 1)三角形的两边之和大于第三边;(2)三角形的两边之差小于第三边;(三角形的第三边大于两边之差小于两边之和)( 3)作用:判定三条已知线段能否组成三角形当已知两边时,可确定第三边的范畴;证明线 段不等关系;4、三角形的内角的关系:( 1)三角形三个内角和等于 180 ( 2)直角三角形的两个锐角互余;5、三角形的稳固性:三角形的外形是固定的,三角形的这个性质叫做三角
23、形的稳固性;四边形具有不稳固性;6、三角形的分类:1 三角形按边分类:不等边三角形三角形 底和腰不相等的等腰三角形 等腰三角形 等边三角形 2 三角形按角分类:直角三角形(有一个角为直角的三角形)三角形 锐角三角形(三个角都是锐角的三角形)斜三角形钝角三角形(有一个角为钝角的三角形)- 7 - 名师归纳总结 - - - - - - -第 7 页,共 12 页精选学习资料 - - - - - - - - - 把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形;它是两条直角边相等的直角三角形;7、三角形的三种重要线段:( 1)三角形的角平分线:定义: 在三角形中, 一个内角的平分线与它的
24、对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线;性质:三角形的三条角平分线交于一点(内心 );交点在三角形的内部;( 2)三角形的中线:定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线;性质:三角形的三条中线交于一点(重心 ),交点在三角形的内部;( 3)三角形的高线:定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高);性质:三角形的三条高所在的直线交于一点(垂心 );锐角三角形的三条高线的交点在它的内部;直角三角形的三条高线的交点是它的斜边的中点;钝角三角形的三条高所在的直线的交点在它的外部;中线平分对边区分相
25、同三条中线交于三角形内部角平分线平分内角三条角平分线交于三角表内部(1)都是线段高线垂直于对边锐角三角形:三条高线都在三角形内部(2)都从顶点画出(或其延长直角三角形:其中两条恰好是直角边(3)所在直线相交于一点线)二、图形的全等全等图形: 定义:能够完全重合的两个图形叫做全等图形;性质:全等图形的外形和大小都相同;全等三角形1、全等三角形及有关概念:能够完全重合的两个三角形叫做全等三角形;两个三角形全等时,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角;2、全等三角形的表示:全等用符号“ ” 表示,读作“ 全等于” ;如ABC DEF,读作“ 三角形ABC全等于三
26、角形DEF” ;留意: 记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上;3、全等三角形的性质:全等三角形的对应边相等,对应角相等;4、三角形全等的判定:( 1)边边边: 有三边对应相等 的两个三角形全等(可简写成“ 边边边” 或“SSS” );( 2)角边角: 两角和它们的夹边对应相等 的两个三角形全等(可简写成“ 角边角” 或“ASA” )( 3)角角边: 两角和其中一角的对边对应相等 的两个三角形全等(可简写成“ 角角边” 或“AAS” )( 4)边角边: 两边和它们的夹角对应相等 的两个三角形全等(可简写成“ 边角边” 或“SAS” )直角三角形全等的判定:对于特殊的直角三
27、角形,判定它们全等时,仍有“HL” 定理(斜边、直角边定理):斜边和一条直角边对应相等的两个直角三角形- 8 - 找夹角(SAS)5证题的思路:已知两边找直角(HL)留意:判定两个三角形全等必需有一组边对应相等;找第三边(SSS)全等三角形面积相等如边为角的对边,就找任意角(AAS)名师归纳总结 已知一边一角边为角的邻边找已知角的另一边(SAS)找已知边的对角(AAS)找夹已知边的另一角(ASA)已知两角找两角的夹边(ASA)找任意一边(AAS)第 8 页,共 12 页- - - - - - -精选学习资料 - - - - - - - - - 6、用尺规做三角形(依据判定)“ SAS” “AS
28、A” “SSS”题目一:已知三边作三角形;已知:如图,线段 a, b,c. 求作:ABC,使 AB = c ,AC = b ,BC = a. 作法:( 1)作线段 AB=c;( 2)以 A 为圆心 b 为半径作弧,( 3)以 B 为圆心 a 为半径作弧与 前弧相交于 C;( 4)连接 AC,BC;就 ABC就是所求作的三角形;题目二:已知两边及夹角作三角形;. 已知:如图,线段 m, n, 求作:ABC,使 A=,AB=m,AC=n. 作法:( 1)作 A=;( 2)在 AB上截取 AB=m ,AC=n;( 3)连接 BC;就 ABC就是所求作的三角形;题目三:已知两角及夹边作三角形;已知:如
29、图,线段 m . ,AB=m. 求作:ABC,使 A=, B=作法:( 1)作线段 AB=m;( 2)在 AB的同旁作 A=,作 B=, A与 B 的另一边相交于 C;就 ABC就是所求作的图形(三角形);7、利用三角形全等测距离 第五章 生活中的轴对称一、轴对称 1、轴对称图形:假如一个图形沿一条直线折叠后,直线两旁的部分能够相互重合,那么这个图形叫做轴对称图 形,这条直线叫做对称轴;2、轴对称: 假如两个平面图形沿一条直线对折后,能够完全重合,那么称这两个图形成轴对称,这条直线叫做 这两个图形的对称轴;3、性质: 在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线
30、段相等,对应 角相等;二、等腰三角形 1、等腰三角形:有两条边相等的三角形叫做等腰三角形;2、等腰三角形的性质:( 1)等腰三角形的两个底角相等,简写成“等边对等角 ”- 9 - 名师归纳总结 - - - - - - -第 9 页,共 12 页精选学习资料 - - - - - - - - - ( 2)等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“ 三线合一” )( 3)等腰三角形是轴对称图形,等腰三角形顶角的平分线、底边上的中线、底边上的高它们所在的直线都是等腰三角形的对称轴;3、等腰三角形的判定:( 1)有两条边相等的三角形是等腰三角形;(三、线段的垂直平分线(简称中垂线):2
31、)假如一个三角形有两个角相等,那么它们所对的边也相等定义: 垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;性质:线段垂直平分线上的点到这条线段两个端点的距离相等;作法:作已知线段的垂直平分线;已知:线段 AB 求作: AB的垂直平分线;作法:()分别以 A、B 为圆心,大于 AB/2 的长为半径作弧两弧相交于点 C和 D;()作直线 CD就直线 CD就是线段 AB的垂直平分线;四、角平分线的性质:1、角是轴对称图形,角平分线所在的直线是它的对称轴;2、性质:角平分线上的点到这个角的两边的距离相等;3、作已知角的角平分线;已知:如图,AOB,求作:射线 OP,使 AOP BOP(即
32、 OP平分 AOB);作法:( 1)在 OA和 OB分别截取 OM,ON使 OM=ON ( 2)分别以 M、为圆心,大于 的长为半径作弧,两弧交 AOB内于;( 3)作射线 OP;射线 OP就是 AOB的角平分线;3、作法:五、等边三角形:明白1、等边三角形:三边都相等的三角形叫做等边三角形;2、等边三角形的性质:( 1)具有等腰三角形的全部性质;(2)等边三角形的各个角都相等,并且每个角都等于60 ;3、等边三角形的判定( 1)三边都相等的三角形是等边三角形;(2):三个角都相等的三角形是等边三角形( 3):有一个角是 60 的等腰三角形是等边三角形;六、轴对称的性质、运用(两线段之和最小)
33、1、两个图形沿一条直线对折后,能够重合的点称为对应点(对称点),能够重合的线段称为对应线段,能够 重合的角称为对应角;2、关于某条直线对称的两个图形是全等图形;3、假如两个图形关于某条直线对称,那么对应点所连的线段被对称轴垂直平分;4、假如两个图形关于某条直线对称,那么对应线段、对应角都相等;七、镜面对称 1. 当物体正对镜面摆放时,镜面会转变它的左右方向;- 10 - 名师归纳总结 - - - - - - -第 10 页,共 12 页精选学习资料 - - - - - - - - - 2. 当垂直于镜面摆放时,镜面会转变它的上下方向;3. 假如是轴对称图形,当对称轴与镜面平行时,其镜子中影像与
34、原图一样;同学通过争论,可能会找出以下解决物体与像之间相互转化问题的方法:( 1)利用镜子照 留意镜子的位置摆放 ;( 2)利用轴对称性质;( 3)可以把数字左右颠倒,或做简洁的轴对称图形;( 4)可以看像的背面;(5)依据前面的结论在头脑中想象;尺规作图尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图;最基本, 最常用的尺规作图, 通常称 基本作图 ;一些复杂的尺规作图都是由基本作图组成的;五种基本作图:1. 作一条线段等于已知线段;2. 作一个角等于已知角;3. 作已知线段的垂直平分线;4. 作已知角的角平分线;5. 过一点作已知直线的垂线;第六章 概率初步1. 在肯定条件下肯定发生
35、的大事,叫做 必定大事 ;在肯定条件下肯定不会发生的大事,叫做 不行能大事 ;必定大事和不行能大事统称为 确定大事 ;有些事情事先无法确定它会不会发生,这些事情称为 不确定大事 ,也称为 随机大事 ;2. 在试验次数很大 时,不确定大事发生的频率都会在一个常数 邻近摇摆 , 这就是 频率的稳固性 ;一般地,把刻画大事A发生的可能性大小的数值,称为大事A发生的 概率 , 记为 P(A). 3. 留意:在大量重复试验中,我们常用不确定大事发生的频率来估量大事发生的概率说明 概率是个定值 , 而频率随不同试验次数而有所不同 4. 大事 A 发生的概率记作 P(A)就: 0PA 1;, 是概率的近似值
36、 , 二者不能简洁地等同 . 必定大事发生的概率为1,不行能大事发生的概率为0,不确定大事发生的概率PA 为 0 与 1 之间的一个常数;5. 等可能大事概率(1)一次试验中,可能显现的结果有限多个 . (2)一次试验中,各种结果发生的可能性相等 . 设一个试验的全部可能的结果有 n 种,每次试验有且只有其中的一种结果显现,假如每种结果显现的可能性相同,那么我们就称这个试验的结果是 等可能的 ;一般地,假如一个试验有 n 种等可能的结果,大事 A 包含其中的 m种结果,那么大事 A发生的 概率为: PA= m 留意: 0PA1n- 11 - 名师归纳总结 - - - - - - -第 11 页,共 12 页精选学习资料 - - - - - - - - - 一共有 n 种结果, 每种结果显现的可能性都相同,为 PA=m n6. 嬉戏是否公正:大事 A显现的结果有 m种,所以大事 A发生的概率嬉戏对双方公正是指双方获胜的可能性相同,即获胜概率相同;7. 摸到红球的概率:P(摸到红球) =摸到红球可能显现的结果数摸出一球可能显现的结果数8. 嬉戏的设计:- 12 - 名师归纳总结 - - - - - - -第 12 页,共 12 页