37切线长定理.ppt

上传人:仙*** 文档编号:27202740 上传时间:2022-07-23 格式:PPT 页数:25 大小:341.51KB
返回 下载 相关 举报
37切线长定理.ppt_第1页
第1页 / 共25页
37切线长定理.ppt_第2页
第2页 / 共25页
点击查看更多>>
资源描述

《37切线长定理.ppt》由会员分享,可在线阅读,更多相关《37切线长定理.ppt(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、(1)和圆有唯一公共点的直线叫 (2)圆的切线 过切点的半径。 (3)四边形ABCD各边都和 O相切,则四边形ABCD叫做这个圆的圆的切线垂直于外切四边形一复习一复习切线的识别方法;(1)和圆只有一个公共点的直线是圆的切线)和圆只有一个公共点的直线是圆的切线(2)到圆心的距离等与圆的半径的直线是圆)到圆心的距离等与圆的半径的直线是圆的切线的切线(3 )证明一条直线是圆的切线的常见的两种方法;v当直线和圆有一个公共点时,把圆心和这当直线和圆有一个公共点时,把圆心和这个公共点连接起来,然后证明直线垂直于个公共点连接起来,然后证明直线垂直于这条半径,简称这条半径,简称“作半径,证垂直作半径,证垂直”

2、v当直线和圆的公共点没有明确时,可过圆当直线和圆的公共点没有明确时,可过圆心作直线的垂线,再证明圆心到直线的距心作直线的垂线,再证明圆心到直线的距离等于半径。简称离等于半径。简称“做垂直。证半径做垂直。证半径”过圆外的一点作圆的切线,可以作出几条切线?问题:经过圆外一点作圆的切线,这点和切点之间的线经过圆外一点作圆的切线,这点和切点之间的线段的长叫做段的长叫做切线长。切线长。数学探究一数学探究一OBPA切线长和切线的区别和联系切线长和切线的区别和联系: :OPABM根据你的直观判断,猜想图中PA是否等于PB?1与2又有什么关系?12关键是作辅助线AOPB如何证明如何证明 PA=PB, APO=

3、 BPO ?证明:连结证明:连结OA、OB PA、PB是是 O的两条切线的两条切线OAAP,OBBP又又 OA=OB,OP=OP Rt AOP RtBOP PA=PB, APO= BPO已知已知PAPA、PBPB是是O O的两条切线,的两条切线,A A、B B为切点,为切点,PA、PB分别切分别切 O于于A、BPA = PBOPA=OPB 从圆外一点引圆的两条切线,它从圆外一点引圆的两条切线,它们的切线长相等,们的切线长相等,这一点和圆心这一点和圆心的连线平分两的连线平分两条切线的夹角。条切线的夹角。 切线长定理切线长定理APO。B几何语言几何语言:一、判断一、判断(1 1)过任意一点总可以作

4、圆的两条切线()过任意一点总可以作圆的两条切线( )(2 2)从圆外一点引圆的两条切线,它们的长相等。)从圆外一点引圆的两条切线,它们的长相等。练习练习(1)(1)如图如图PAPA、PBPB切圆于切圆于A A、B B两点,两点, 连结连结POPO,则,则 度。度。50APBAPOPBOA二、填空二、填空25(3)如图,)如图,PA、PB、DE分别切分别切 O于于A、B、C,DE分别交分别交PA,PB于于D、E,已知,已知P到到 O的的切线长为切线长为8CM,则,则 PDE的周长为(的周长为( )A AA 16cmD 8cmC 12cmB 14cmDCBEA AP例例1、如图,、如图,PA、PB

5、是是 O的切线,的切线,A、B为为切点,切点,OAB30(1)求)求APB的度数;的度数;(2)当)当OA3时,求时,求AP的长的长 PBAOAPO。BM 若连结两切点若连结两切点A A、B B,ABAB交交OPOP于点于点M.M.你又能得你又能得出什么新的结论出什么新的结论? ?并给出证明并给出证明. .OP垂直平分垂直平分AB证明:证明:PAPA,PBPB是是O O的切线的切线, ,点点A A,B B是切点是切点 PA = PB OPA=OPB PABPAB是等腰三角形,是等腰三角形,PMPM为顶角的平分为顶角的平分线线 OP垂直平分垂直平分ABAPO。B 若延长若延长PO交交 O于点于点

6、C,连结,连结CA、CB,你又能得出什么新的结论你又能得出什么新的结论? ?并给出证明并给出证明. .CA=CB证明:证明:PAPA,PBPB是是O O的切线的切线, ,点点A A,B B是切点是切点 PA = PB OPA=OPB PC=PCPC=PC PCA PCB AC=BCAC=BCCABDLMNPO结论:圆的外切四边形的两组对边和相等。结论:圆的外切四边形的两组对边和相等。已知:四边形已知:四边形ABCDABCD的边的边 ABAB,BCBC,CDCD,DADA和圆和圆O O分别相切于分别相切于L L,M M,N N,P P。探索圆外切四边形。探索圆外切四边形边的关系。边的关系。C(1

7、 1)找出图中所有相等的线段)找出图中所有相等的线段(2 2)填空:)填空:AB+CD AD+BCAB+CD AD+BC(,=)= =DN=DP,AP=AL,BL=BM,CN=CM比较圆的内接四边形的性质:比较圆的内接四边形的性质:圆的内接四边形:角的关系圆的内接四边形:角的关系圆的外切四边形:边的关系圆的外切四边形:边的关系例例2、 已知四边形已知四边形ABCD的边的边AB、BC、CD、DA分别与分别与 O相切于相切于P、Q、M、N,求证:求证:AB+CD=AD+BC。 DABCOMNPQ已知已知:如图如图, O是是RtABC的内切圆的内切圆,C是直角是直角,三边长分别是三边长分别是a,b,

8、c.求求 O的半径的半径r. ABCODEF.2cbar(1 1)RtRt的三边长与其内切圆半径间的关系的三边长与其内切圆半径间的关系。PBAO反思:在解决有在解决有关圆的切线长的问关圆的切线长的问题时,往往需要我题时,往往需要我们构建基本图形。们构建基本图形。(3)连结圆心和圆外一点)连结圆心和圆外一点(2)连结两切点)连结两切点(1)分别连结圆心和切点)分别连结圆心和切点1.切线长定理切线长定理 从圆外一点引圆的两条切线,它们的从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的切线长相等,圆心和这一点的连线平分两条切线的夹夹角角。 小小 结:结:APO。BECDP

9、A、PB分别切分别切 O于于A、BPA = PB ,OPA=OPBOP垂直平分垂直平分AB 切线长定理为证明切线长定理为证明线段相等,角线段相等,角相等,弧相等,垂直关系相等,弧相等,垂直关系提供了理论提供了理论依据。必须掌握并能灵活应用。依据。必须掌握并能灵活应用。2.圆的外切四边形的两组对边的和相等圆的外切四边形的两组对边的和相等我们学过的切线,常有我们学过的切线,常有 五个五个 性质:性质:1 1、切线和圆只有一个公共点;、切线和圆只有一个公共点;2 2、切线和圆心的距离等于圆的半径;、切线和圆心的距离等于圆的半径;3 3、切线垂直于过切点的半径;、切线垂直于过切点的半径;4 4、经过圆

10、心垂直于切线的直线必过切点;、经过圆心垂直于切线的直线必过切点;5 5、经过切点垂直于切线的直线必过圆心。、经过切点垂直于切线的直线必过圆心。6 6、从圆外一点引圆的两条切线,它们的切线长相等,、从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。圆心和这一点的连线平分两条切线的夹角。六个六个1、如图,一圆内切于四边形、如图,一圆内切于四边形ABCD,且,且AB=16,CD=10,则四边形的周长为,则四边形的周长为( )(A)50 (B) 52 (C)54 (D) 56DABC考一考:考一考: OABCDE2、如图,AB是 O的直径,AD、DC、BC是切线,点A、

11、E、B为切点,若BC=9,AD=4,求OE的长. OABCDEF知识拓展知识拓展拓展一:拓展一:直角三角形的外接圆与内切圆直角三角形的外接圆与内切圆CBACOBA1.直角三角形外接圆的圆心直角三角形外接圆的圆心(外心外心)在在_,半径为半径为_.2.直角三角形内切圆的圆心直角三角形内切圆的圆心(内心内心)在在_,半径半径r=_.abc斜边中点斜边中点斜边的一半斜边的一半三角形内部三角形内部a+b-c2知识拓展知识拓展知识拓展知识拓展5.已知:如图已知:如图,PA、PB是是 O的切线,切点分别是的切线,切点分别是A、B,Q为为 O上一点,过上一点,过Q点作点作 O的切线,的切线,交交PA、PB于于E、F点,已知点,已知PA=12cm,P=70,求:求:PEF的周长和的周长和EOF的大小。的大小。EAQPFBO

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁