《3 数列等差求和专题讲义--高二下学期数学人教A版(2019)选择性必修第二册.docx》由会员分享,可在线阅读,更多相关《3 数列等差求和专题讲义--高二下学期数学人教A版(2019)选择性必修第二册.docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、数列专题3-1 等差求和 (12套,9页,含答案) 知识点:等差求和: 一般把a1a2an叫数列an的前n项和,记做Sn.例如a1a2a16可以记作S16;a1a2a3an1Sn1 (n2) 公式: (一般时用公式法比较好): Snna1d 罗列: (一般时用该罗列法比较好):; ; ; ;典型例题:1. 在等差数列an中,a78,前7项和S742,则其公差是为_ 答案:;_ 2. 已知是公差为1的等差数列,为的前项和,若,则( 答案:B; ) (A) (B) (C) (D)3. 已知为等差数列的前项和,若,则的值为 ( 答案:A; )ABCD 随堂练习:1. 在等差数列an中,S10120,
2、那么a1a10的值是( 答案B;解析由S10,得a1a1024.) A.12 B.24 C.36 D.482. 设Sn是等差数列an的前n项和,已知a23,a611,则S7等于( 答案C;解析S749.)A13 B35 C49 D633. 在等差数列中,若前项的和,则( 答案:C【解析】, )A4 B-4 C5 D-54. 设等差数列的前项和为,已知,则 ( 答案:C【解析】设等差数列的公差为d,因为的等差数列,所以由 可知等差数列的公差d=2,所以.) A2008 B2008 C2010 D2010 5. 设是等差数列的前n项和,若( 答案:A ; ) A B C D专题3-1答案:; 答案
3、:B; 答案:A; 答案:B; 答案:C; 答案:C; 答案:C; 答案:A;数列专题3-2 等差求和1. 若等差数列满足a1+a2+a2015+a2016=3,则的前2016项之和S2016=( 答案:D;) A1506 B1508 C1510 D15122. 设等差数列的前项和为,若,则( 答案:A;【解析】 设等差数列的公差为,由条件得,所以,即,所以 )A2 B3 C4 D53. 在等差数列中,若,则的值为( 答案:9; )4. 在等差数列中,则为( 答案:; )5. 若等差数列中,则 答案:156;6. 已知等差数列的前项和味,.(1)求数列的通项公式;(2). 答案:解:(1)由条
4、件可得:消去得:,解得或(舍),所以所以.(2)由(1)得:所以数列的前项和为:7. 设为等差数列的前项和,已知,(1)求的通项公式; 答案:解:(1)等差数列中,解得,(2)w,随着的增大而增大,递增,又,实数的最小值为5(2)专题3-2答案:D; 答案:A; 答案:9; 答案:; 答案:156; 答案:; 答案:2n-1;数列专题3-3 等差求和 1. 已知等差数列前9项的和为27,则( 答案:C; )(A)100 (B)99 (C)98 (D)972. 在等差数列中,首项0,公差0,若,则( 答案:A; )A、22B、23C、24D、253. 数列是等差数列,则_ 答案:49;_4. 在
5、等差数列an中,a3a7a108, a11a44, 记Sna1a2a3an,则S13等于( 答案:156 )。5. 在等差数列中,已知,公差,求( 答案:63;)6. 已知等差数列的前项和为,且,.(1)求数列的通项公式;(2). 答案:解析:(1),求得.6分 (2).8分.12分7. 已知正项等差数列的前n项和为,且满足,。(I)求数列的通项公式;(II)( 答案:(1);(2);解:() 设等差数列的公差为,又,于是2分,4分,故.6分()且,当时,.8分当时,满足上式故.9分 10分.12分)专题3-3答案:C;答案:A;答案:49;答案:156 答案:63; 答案:; 答案:;数列专
6、题3-4 等差求和 1. 已知等差数列,则此数列的前11项的和(答案:C; )A44 B33 C22 D112. 设数列是等差数列,为其前项和.若,则( 答案:C; )A4 B.36 C.-74 D.803. 在等差数列中, 求的值 ( 答案:31.5;) 4. 等差数列中,则该数列前9项的和等于:( 答案:27; ) 5. 等差数列中,= 答案:18;。6. 已知等差数列的前项和为,已知求通项;( (文)解:(1),解得,(2), 又已知数列是递增数列,所以,所以)7. 已知等差数列an的前n项和Sn满足S30,S55.求an的通项公式;( 17解:(1)设an的公差为d,则Sn.由已知可得
7、解得a11,d1.故an的通项公式为an2n.(2)由(1)知,从而数列的前n项和为.)专题3-4答案:C;答案:C; 答案:31.5; 答案:27; 答案:18; 答案:; 答案:an2n;数列专题3-5 等差求和 1. 设为等差数列的前项和,且,则=( 答案:B; )(A)55 (B)66 (C)110 (D)1322. 在等差数列中,首项,公差,若,则( 答案:A;【解析】,所以 )A22 B23 C24 D253. 设Sn是等差数列an的前n项和,若,则等于( 答案:A;解析方法一a12d,.方法二由,得S63S3.S3,S6S3,S9S6,S12S9仍然是等差数列,公差为(S6S3)
8、S3S3,从而S9S6S32S33S3S96S3,S12S9S33S34S3S1210S3,所以.)A. B. C. D.4. 设Sn为等差数列an的前n项和,若S33,S624,则a9_ 答案:15;解析设等差数列的公差为d,则S33a1d3a13d3,即a1d1,S66a1d6a115d24,即2a15d8.由解得故a9a18d18215._.5. 在等差数列an中,已知d2,an11,Sn35,求a1和n. 答案:或;解由得解方程组得或6. 已知等差数列的前项和为,且.求数列的通项公式;( 20解:(1)设首项为,公差为d,则解得(2)当n为偶数时,当n为奇数时,)7. 已知:等差数列中
9、,=14,前10项和求;( 答案:)专题3-5答案:B;A;A;15;或;答案:;答案:数列专题3-6 等差求和 1. 在数列中,为的前n项和,若21,则n 答案:6;2. 等差数列中,,则的前项和= 答案:35; 3. 设Sn是等差数列an的前n项和,若,则等于( 答案:A;解析由等差数列的性质,1.)A1 B1 C2 D.4. 等差数列an中,S104S5,则等于( 答案:A;解析由题意得:10a1109d4(5a154d),10a145d20a140d,10a15d,.) A. B2 C. D45. 设等差数列an的前n项和为Sn,若S39,S636.则a7a8a9等于( 答案:B;解析
10、数列an为等差数列,则S3,S6S3,S9S6为等差数列,即2(S6S3)S3(S9S6),S39,S6S327,则S9S645.a7a8a9S9S645.)A63 B45 C36 D276. 设为等差数列,为数列的前项和,已知,求数列的通项公式;( 答案:) 数列专题3-7 等差求和 1. 设为等差数列,公差d=2,为其前n项和,若,则( 答案:B;【解析】由得,即.由于,所以.故B正确. )A18 B20 C22 D242. 设为等差数列的前n项和,若,公差d2,36,则n( 答案:D;) A、5B、6C、7D、83. 等差数列的前n项和为( 答案:B; )A. B. C. D. 答案:2
11、550;4. 。5. 等差数列中,则 答案:210 ; 。专题3-6答案:6;35;A; A; B; 专题3-7答案:B; D; B; 2550; 210 ; 数列专题3-8 等差求和 1. 设为等差数列的前项和,若,公差,则的值为( 答案:C;【解析】因为数列的前项和与满足关系式,所以有,又为等差数列,所以,所以本题的正确选项为C. )A.5 B.6 C.7 D.82. 已知是等差数列,且16,则数列的前9 项和等于( 答案:B; ) A.36 B.72 C.144 D.2883. 在等差数列中,已知,那么它的前8项之和等于( 答案:D; )A. 12 B. 24 C. 36 D. 48 4
12、. 在等差数列中,则等于( 答案:D; )A. 5或7 B. 3或5 C. 7或 D. 3或5. 等差数列中,则n等于( 答案:B; )A. 11 B. 9 C. 9或18 D. 18数列专题3-9 等差求和 1. 设等差数列的前项和为,若,则( 答案:B;)(A)62 (B)66 (C)70 (D)742. 已知等差数列中,,则此数列的前10项之和( 答案:190;解析: 即 所以)3. 在等差数列中,已知求和。 答案:;4. 在等差数列中,若,Sn是数列的前n项和,则的值为 ( 答案:B; )(A)48 (B)54 (C)60 (D)665. 设Sn是等差数列的前n项和,若,则 ( 答案:
13、A; )(A) (B) (C) (D)专题3-8答案:C; B; D; D; B; 专题3-9答案:B; 190; ; B;A;数列专题3-10 等差求和 1. 在等差数列中,首项公差,若,则m的值为( 答案:A;解析:由得,选A) A37 B36 C20 D192. 已知an为等差数列,Sn为其前n项和,若,S2=a3,则a2=_,Sn=_ 答案:,;【解析】因为,所以,。_。3. 等差数列中,则 答案:9; 。4. 若等差数列的前三项和且,则等于( 答案:A;)A3 B4 C5 D65. 等差数列的前项和为若( 答案:C; ) A12 B10 C8 D6数列专题3-11 等差求和 1. 设
14、数列是等差数列, , , 则此数列前项和等于( 答案:B;) A160 B180 C200 D2202. 记等差数列的前项和为,若,则( 答案:48; )3. 等差数列前9项的和等于前4项的和.若,则 答案:10; 4. 设为等差数列,公差d = -2,为其前n项和.若,则= ( 答案:B; ) A.18 B.20 C.22 D.245. 设等差数列的前项和为,若,则( 答案:B;)A63 B45 C36 D27专题3-10答案:A; 答案:,; 答案:9; 答案:A; 答案:C;专题3-11答案:B; 答案:48; 答案:10; 答案:B; 答案:B;数列专题3-12 等差求和 1. 在等差数列中,前项和为,已知,则 ( 答案:A;) A.33 B.35 C.45 D.662. 设数列是等差数列, , , 则此数列前项和等于( 答案:;) 3. 已知是等差数列,其前10项和,则其公差( 答案:;)4. 设等差数列的前项和为,若,则( 答案:45; )5. 设等差数列an的前n项和为Sn,若a6S312,则an的通项an 答案:2n;解析由a6S312可得an的公差d2,首项a12,故易得an2n._.专题3-12答案:A; 答案:180; 答案:; 答案:45; 答案:2n;第 16 页 共 16 页学科网(北京)股份有限公司