最新复习课4ppt课件ppt课件.ppt

上传人:豆**** 文档编号:27182889 上传时间:2022-07-23 格式:PPT 页数:31 大小:755.50KB
返回 下载 相关 举报
最新复习课4ppt课件ppt课件.ppt_第1页
第1页 / 共31页
最新复习课4ppt课件ppt课件.ppt_第2页
第2页 / 共31页
点击查看更多>>
资源描述

《最新复习课4ppt课件ppt课件.ppt》由会员分享,可在线阅读,更多相关《最新复习课4ppt课件ppt课件.ppt(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、进入夏天,少不了一个热字当头,电扇空调陆续登场,每逢此时,总会进入夏天,少不了一个热字当头,电扇空调陆续登场,每逢此时,总会想起那一把蒲扇。蒲扇,是记忆中的农村,夏季经常用的一件物品。记想起那一把蒲扇。蒲扇,是记忆中的农村,夏季经常用的一件物品。记忆中的故乡,每逢进入夏天,集市上最常见的便是蒲扇、凉席,不论男女老忆中的故乡,每逢进入夏天,集市上最常见的便是蒲扇、凉席,不论男女老少,个个手持一把,忽闪忽闪个不停,嘴里叨叨着少,个个手持一把,忽闪忽闪个不停,嘴里叨叨着“怎么这么热怎么这么热”,于是三,于是三五成群,聚在大树下,或站着,或随即坐在石头上,手持那把扇子,边唠嗑五成群,聚在大树下,或站着

2、,或随即坐在石头上,手持那把扇子,边唠嗑边乘凉。孩子们却在周围跑跑跳跳,热得满头大汗,不时听到边乘凉。孩子们却在周围跑跑跳跳,热得满头大汗,不时听到“强子,别跑强子,别跑了,快来我给你扇扇了,快来我给你扇扇”。孩子们才不听这一套,跑个没完,直到累气喘吁吁,。孩子们才不听这一套,跑个没完,直到累气喘吁吁,这才一跑一踮地围过了,这时母亲总是,好似生气的样子,边扇边训,这才一跑一踮地围过了,这时母亲总是,好似生气的样子,边扇边训,“你你看热的,跑什么?看热的,跑什么?”此时这把蒲扇,是那么凉快,那么的温馨幸福,有母亲此时这把蒲扇,是那么凉快,那么的温馨幸福,有母亲的味道!蒲扇是中国传统工艺品,在我国

3、已有三千年多年的历史。取材的味道!蒲扇是中国传统工艺品,在我国已有三千年多年的历史。取材于棕榈树,制作简单,方便携带,且蒲扇的表面光滑,因而,古人常会在上于棕榈树,制作简单,方便携带,且蒲扇的表面光滑,因而,古人常会在上面作画。古有棕扇、葵扇、蒲扇、蕉扇诸名,实即今日的蒲扇,江浙称之为面作画。古有棕扇、葵扇、蒲扇、蕉扇诸名,实即今日的蒲扇,江浙称之为芭蕉扇。六七十年代,人们最常用的就是这种,似圆非圆,轻巧又便宜的蒲芭蕉扇。六七十年代,人们最常用的就是这种,似圆非圆,轻巧又便宜的蒲扇。蒲扇流传至今,我的记忆中,它跨越了半个世纪,也走过了我们的扇。蒲扇流传至今,我的记忆中,它跨越了半个世纪,也走过

4、了我们的半个人生的轨迹,携带着特有的念想,一年年,一天天,流向长长的时间隧半个人生的轨迹,携带着特有的念想,一年年,一天天,流向长长的时间隧道,袅道,袅积分法积分法原原 函函 数数选选择择u u有有效效方方法法基基本本积积分分表表第一换元法第一换元法 第二换元法第二换元法直接直接积分法积分法分部分部积分法积分法不不 定定 积积 分分几种特殊类型几种特殊类型函数的积分函数的积分;)(. 11dxxxfnn ;)(. 2dxxxf;)(ln. 3dxxxf;)1(. 42dxxxf;cos)(sin. 5xdxxf;)(. 6dxaafxx常见类型常见类型:;sec)(tan. 72xdxxf;1

5、)(arctan. 82dxxxf 6 6、第二类换元法、第二类换元法定定理理 设设)(tx 是是单单调调的的、可可导导的的函函数数,并并且且0)( t ,又又设设)()(ttf 具具有有原原函函数数,则则有有换换元元公公式式 )()()()(xtdtttfdxxf 其中其中)(x 是是)(tx 的反函数的反函数.第二类换元公式第二类换元公式常用代换常用代换:.,)(. 1Rbatx .sin,)(. 222taxxaxf 令令如如三角函数代换三角函数代换.,)(. 322ashtxxaxf 令令如如双曲函数代换双曲函数代换.1. 4tx 令令倒置代换倒置代换7 7、分部积分法、分部积分法分部

6、积分公式分部积分公式dxvuuvdxvu duvuvudv 8.8.选择选择u u的有效方法的有效方法: :LIATELIATE选择法选择法L-对数函数;对数函数;I-反三角函数;反三角函数;A-代数函数;代数函数;T-三角函数;三角函数;E-指数函数;指数函数; 哪个在前哪个选作哪个在前哪个选作u.9 9、几种特殊类型函数的积分、几种特殊类型函数的积分(1)有理函数的积分)有理函数的积分定义定义两个多项式的商表示的函数称之两个多项式的商表示的函数称之.mmmmnnnnbxbxbxbaxaxaxaxQxP 11101110)()(其中其中m、n都是非负整数;都是非负整数;naaa,10及及mb

7、bb,10都是实数,并且都是实数,并且00 a,00 b.真分式化为部分分式之和的真分式化为部分分式之和的待定系数法待定系数法四种类型分式的不定积分四种类型分式的不定积分;ln. 1CaxAaxAdx ;)(1()(. 21CaxnAaxAdxnn ;arctanln2. 342422222CqxqNqpxxMdxqpxxNMxpppMp dxqpxxNqpxxdxpxMdxqpxxNMxnMpnn)()()2(2)(. 42222此两积分都可积此两积分都可积,后者有递推公式后者有递推公式令令2tanxu 212sinuux 2211cosuux uxarctan2 duudx212 dxxx

8、R)cos,(sinduuuuuuR22221211,12 (2) 三角函数有理式的积分三角函数有理式的积分定义定义 由三角函数和常数经过有限次四则运算由三角函数和常数经过有限次四则运算构成的函数称之一般记为构成的函数称之一般记为)cos,(sinxxR(3) 简单无理函数的积分简单无理函数的积分讨论类型:讨论类型:),(nbaxxR ),(necxbaxxR 解决方法:解决方法:作代换去掉根号作代换去掉根号;necxbaxt 令令;nbaxt 令令二、典型例题二、典型例题例例1 1 dxxx1)23()23(2原式原式解解.4932 dxxxxx求求 1)23()23(23ln12xxd 1

9、23ln12tdt dttt)1111(23ln21Ctt 11ln)2ln3(ln21.2323ln)2ln3(ln21Cxxxx tx )23(令令例例2 2解解.cos1)sin1( dxxxex求求 dxxxxex2cos2)2cos2sin21(2原式原式 dxxexexx)2tan2cos21(22tan)2(tan( xxdexxde )2tan(xedx.2tanCxex 例例3 3解解.15)1ln(22 dxxxx求求5)1ln(2 xx,112x 5)1ln(5)1ln(22 xxdxx原原式式.5)1ln(32232Cxx )1221(1122xxxx 例例4 4解解.

10、1122 dxxxx求求,1tx 令令dttttt)1(1)1(111222 原式原式dttt 211 22212)1(11ttddttCtt 21arcsin.1arcsin12Cxxx (倒代换倒代换)例例5 5解解.1632 xxxeeedx求求,6tex 令令,ln6tx ,6dttdx dttttt61123 原原式式dtttt )1)(1(622211)1)(1(6tDCttBtAttt 设设)1()()1()1)(1(622 ttDCttBtttA解得解得. 3, 3, 3, 6 DCBAdttttt)133136(2 原式原式Ctttt arctan3)1ln(23)1ln(3

11、ln62.arctan3)1ln(23)1ln(3636Ceeexxxx 例例6 6解解.)1ln(arctan2 dxxxx求求dxxx)1ln(2 )1()1ln(2122xdx .21)1ln()1(21222Cxxx 21)1ln()1(21arctan222xxxxd 原原式式xxxxarctan)1ln()1(21222 dxxxx1)1ln(21222 例例7 7解解.)2(10 xxdx求求 )2(10109xxdxx原式原式 )2()(101101010 xxxdCxx )2ln(ln2011010.)2ln(201ln2110Cxx .2)1ln(23)1ln()1(arc

12、tan212222Cxxxxxxx 例例8 8解解.)1()1(342 xxdx求求.)1()11()1()1(234342 xxxxx,11 xxt令令,)1(22dxxdt 则则有有 原原式式 234)1()11(xxxdxdtt 3421Ct 3123.11233Cxx 例例9 9解解.cos1sin dxxxx求求dxxxxx 2cos22cos2sin22原式原式dxxdxxx 2tan2cos22dxxdxxxx 2tan2tan2tan.2tanCxx 例例1010解解 dxxfxfxfxfxf)()()()()(322原式原式.)()()()()(32 dxxfxfxfxfxf

13、求求 dxxfxfxfxfxfxf)()()()()()(22 )()()()(xfxfdxfxf.)()(212Cxfxf 例例1111解解., 1max dxx求求, 1max)(xxf 设设,1,11,11,)( xxxxxxf则则,),()(上上连连续续在在 xf).(xF则必存在原函数则必存在原函数须处处连续,有须处处连续,有又又)(xF.1,2111,1,21)(32212 xCxxCxxCxxF)21(lim)(lim12121CxCxxx ,21112CC 即即)(lim)21(lim21321CxCxxx ,12123CC 即即.1,12111,211,21, 1max22 xCxxCxxCxdxx故故.1,2132CCCC 可可得得,1CC 联联立立并并令令

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁