《自动控制课程设计~~~.docx》由会员分享,可在线阅读,更多相关《自动控制课程设计~~~.docx(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、自动控制课程设计 指导教师评定成绩: 审定成绩: 重庆邮电大学 移通学院 自动控制原理课程设计报告 系部: 学生姓名: 专业: 班级: 学号: 指导教师: 设计时间:2022年12 月 重庆邮电大学移通学院制 目录 一、设计题目 二、设计报告正文 摘要 关键词 设计内容 三、设计总结 四、参考文献 一、设计题目 自动控制原理课程设计(简明)任务书供2022级机械设计制造及其自动化专业(4-6班)本科学生用 引言:自动控制原理课程设计是该课程的一个重要教学环节,既有别于毕业设计,更不同于课堂教学。它主要是培养学生统筹运用自动控制原理课程中所学的理论知识,掌握反馈控制系统的基本理论和基本方法,对工
2、程实际系统进行完整的全面分析和综合。 一设计题目:型二阶系统的典型分析与综合设计 二系统说明: 该型系统物理模拟结构如图所示。 系统物理模拟结构图 其中:1M;C =1uF;R0=41R 三系统参量:系统输入信号:x(t); 系统输出信号:y(t); 四设计指标: 设定:输入为x(t)=a1(t)(其中:a=5) 要求动态期望指标:M p20;t s4sec; 五基本要求: a)建立系统数学模型传递函数; b)利用根轨迹方法分析和综合系统(学号为单数同学做); c)利用频率特性法分析和综合系统(学号为双数同学做); d)完成系统综合前后的有源物理模拟(验证)实验; 六课程设计报告: 1.按照移
3、通学院课程设计报告格式写课程设计报告; 2.报告内容包括:课程设计的主要内容、基本原理; 3.课程设计过程中的参数计算过程、分析过程,包括: (1)课程设计计算说明书一份; (2)原系统组成结构原理图一张(自绘); (3)系统分析,综合用精确Bode图一张; (4)系统综合前后的模拟图各一张(附实验结果图); 4.提供参考资料及文献 5.排版格式完整、报告语句通顺; 6.封面装帧成册。 二、设计正文 摘要 根据被控对象及给定的技术指标要求,设计自动控制系统,既要保证所设计的系统有良好的性能,满足给定技术指标的要求,还要考虑方案的可靠性和经济性。由系统物理结构图建立数学模型,通过对系统稳态和动态
4、性能的分析,其均不满足给定技术指标,主要采用了串联滞后校正。 在对系统进行校正时,采用了基于根轨迹的串联滞后校正,对系统校正前后的性能进行了分析和比较,并用visio软件绘制系统物理模拟图和结构框图,以及用MATLAB软件进行仿真和计算。确定了校正环节的传递函数,根据所确定的传递函数,计算物理模拟图的参数,最后确定了系统的物理模拟图。 关键字: 校正visio MATLAB 一)系统说明(概述) 1.设计目的 掌握自动控制原理课程中所学的理论知识; 掌握反馈系统的基本理论和方法,对工程实际系统进行 全面分析 和综合; 掌握控制系统的设计和校正方法; 掌握利用matlab对控制理论进行分析,研究
5、和仿真技 能; 提高分析问题和解决问题的能力。 2.系统原理(简介) 首先,是一个积分环节,第二个,是一个一阶惯性环节第三个是比例环节 图1 系统物理模拟结构 3.各环节的性能、功能特性说明 积分环节是当输入信号为零时,输出信号才能保持不变,而且能保持在任何位置上。在控制系统中,引用积分环节可 以消除被控量的偏差。并且由于惯性环节系统的阻力,一开 始输出并不与输入同步按比例变化,直到过渡过程结束,输出 才能与输出保持比例,从而保证了控制过程作无差控制。 4.设计基本要求 要求输出等于给定输入所要求的期望输出值。 要求输出尽量不受扰动的影响。 衡量一个系统是否完成除以上两点,还要求稳,快,准 5
6、.设计指标 设定:输入为r(t)=a*1t(其中:a=5 ) 要求动态期望指标: p 20;t s 4sec; 二)系统建模 1.各个环节模型 (1)环节结构图(电路原理图) (2)写出输入输出关系 (3)写出传递函数G(s),画出结构方框图 (1)比例环节: 具有比例运算关系的元部件称为比例环节,其特点:输入输出量成正比。 输入X 输出U G=- CSR 1 (2)惯性环节: 一阶惯性环节的微分方程是一阶的,且输出响应需要一定时间后才能达到稳态值,因此称为一阶惯性环 节。其特点:输出信号对输入信号的响应存在惯性(输入信号阶跃加入后,输出信号不能突然变化,只能随时间增加逐渐变化)。 输入 :U
7、 输出 :Y G = 1 / R CS R =-14 RCS (3)积分环节 输出量与输入量成积分关系的环节,称为积分环节。 其特点:输出量与输入量的积分成正比例,当输入消失,输出保持不变,具有记忆功能;积分环节受到扰动自身无法达到稳定。 G =-R R =-1 系统模型:系统的框图结构 比例环节: X Kp - U 其中Kp= Rf Ri =1 惯性环节: U 1 +-Ts Kp Y Kp= Ri Rf T=f f C R 积分环节: )(S Ei Tis 1 - )(S Eo Ti=f i C R 三)对系统进行分析 由一个积分环节串联一介惯性环节的单位负反馈系统。 数学模型如图2所示 X(t) ?_ Ts 1 Ts 4 Y(t) 图2 图中T=RC=1,K=Ro/R=4 作系统的开环传递为 Go(s)= ) 1(4+s s 闭环极点为s=0.5j3 核算系统的动态性能 =770,=0.25,w n=2 M p=45%20% 系统的超调量不满足要求。 4=8s4s T s= w n 系统的超挑时间不满足要求。 作系统的根轨迹如图3所示 图3 系统的阶跃响应曲线如图4所示 图4