《新人教版八年级数学下册第19章一次函数-导学案可编辑打印.doc》由会员分享,可在线阅读,更多相关《新人教版八年级数学下册第19章一次函数-导学案可编辑打印.doc(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、11119.1.1变量与函数(1)学习目标:通过探索具体问题中的数量关系和变化规律来了解常量、变量的意义;学会用含一个变量的代数式表示另一个变量;学习重点:了解常量与变量的意义;学习难点:较复杂问题中常量与变量的识别。学习过程:一、自主学习:问题一:汽车以60千米小时的速度匀速行驶,行驶里程为s千米,行驶时间为t小时1、请同学们根据题意填写下表:t/时12345ts/千米2、在以上这个过程中,变化的量是_不变化的量是_3、试用含t的式子表示s,s=_,t的取值范围是 这个问题反映了匀速行驶的汽车所行驶的路程_随行驶时间_的变化过程二、合作探究:问题二:每张电影票的售价为10元,如果早场售出票1
2、50张,午场售出205张,晚场售出310张,三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元 1、请同学们根据题意填写下表:X k B 1 . c o m售出票数(张)早场150午场206晚场310x收入y (元)2、在以上这个过程中,变化的量是_不变化的量是_3、试用含x的式子表示y,y=_ ,x的取值范围是 .这个问题反映了票房收入_随售票张数_的变化过程问题三:当圆的半径r分别是10cm,20cm,30cm时,圆的面积S分别是多少?1、请同学们根据题意填写下表:(用含的式子表示) w W w .x K b 1.c o M半径r10cm20cm30cm面积S2在以上这个过程中,
3、变化的量是_不变化的量是_3试用含S的式子表示r,S=_ ,r的取值范围是 .这个问题反映了_随_的变化过程问题四:用10m长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化记录不同的矩形的长度值,计算相应的矩形面积的值,探索它们的变化规律。设矩形的长为xm,面积为m2 . 1、 请同学们根据题意填写下表:长x(m)4.543.53x另一边长(m)面积s(m2)2、在以上这个过程中,变化的量是_不变化的量是_3、试用含x的式子表示s S=_,x的取值范围是 .这个问题反映了矩形的_ _ 随_ _的变化过程小结:以上这些问题都反映了不同事物的变化过程,其实现实生活中还有好多类似的问
4、题,在这些变化过程中,有些量的值是按照某种规律变化的,有些量的数值是始终不变的。得出结论: 在一个变化过程中,我们称数值发生变化的量为_;在一个变化过程中,我们称数值始终不变的量为_;三、巩固练习:例1、一支圆珠笔的单价为2元,设圆珠笔的数量为x支,总价为y元。则y= ;在这个式子中,变量是 ,常量是 。例2、某种报纸的价格是每份0.4元,买x份报纸的总价为y元。用含x的式子表示y,y ,常量是 ,变量是 。四、达标测试:1小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x之间的关系是 ( )http:/ w ww. xkb1. comAQ=8x BQ=8x-5
5、0 CQ=50-8x DQ=8x+502甲、乙两地相距S千米,某人行完全程所用的时间t(时)与他的速度v(千米/时)满足vt=S,在这个变化过程中,下列判断中错误的是 ( )AS是变量 Bt是变量 Cv是变量 DS是常量3在一个变化过程中,_的量是变量,_的量是常量4某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用含x的式子表示y份数/份1234567100价钱/元x与y之间的关系是y=_,在这个变化过程中,常量_,变量是_5长方形相邻两边长分别为x、y,面积为30,则用含x的式子表示y为y=_,则这个问题中,_常量;_是变量6写出下列问题中的关系式,并指出其中的变量和常
6、量(1)用20cm的铁丝所围的长方形的长x(cm)与面积S(cm2)的关系(2)直角三角形中一个锐角与另一个锐角之间的关系(3)一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t(小时)表示水箱中的剩水量y(吨)课后记X k B 1 . c o m19.1.1 变量与函数(2)学习目标:理解函数的概念,能准确识别出函数关系中的自变量和函数,会用变化的量描述事物,初步学会列函数解析式,会确定自变量的取值范围。k |b| 1 . c|o |m学习重点:函数的概念 及确定自变量的取值范围。 学习难点:认识函数,领会函数的意义。学习过程:一、 创设情境:请你举出生活中含有两个变量的变化过程,说
7、明其中的常量和变量。二、自主学习与合作探究:请看书7274页内容,完成下列问题:1、 思考书中第72页的问题,归纳出变量之间的关系。2、 完成书上第73页的思考,体会图形中体现的变量和变量之间的关系。3、 归纳出函数的定义,明确函数定义中必须要满足的条件。归纳:一般的,在一个变化过程中,如果有_变量x和y,并且对于x的_,y都有_与其对应,那么我们就说x是_,y是x的_。如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。补充小结:(1)函数的定义: (2)必须是一个变化过程;(3)两个变量;其中一个变量每取一个值 ,另一个变量有且有唯一值对它对应。三、巩固练习:例1:一辆汽车的油箱
8、中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:千米)的增加而减少,平均耗油量为0.1L/千米。(1)写出表示y与x的函数关系式.(2)指出自变量x的取值范围.(3) 汽车行驶200千米时,油箱中还有多少汽油?http:/ w ww. xkb1. com四、达标测试:1、P74-75页:1,2题2、判断下列变量之间是不是函数关系:(1)长方形的宽一定时,其长与面积;(2)等腰三角形的底边长与面积;(3)某人的年龄与身高;w W w .X k b 1. c O m3写出下列函数的解析式(1)一个长方体盒子高3cm,底面是正方形,这个长方体的体积为y(cm3),底
9、面边长为x(cm),写出表示y与x的函数关系的式子(2)汽车加油时,加油枪的流量为10L/min如果加油前,油箱里还有5 L油,写出在加油过程中,油箱中的油量y(L)与加油时间x(min)之间的函数关系; 如果加油时,油箱是空的,写出在加油过程中,油箱中的油量y(L)与加油时间x(min) 之间的函数关系(3)某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式.(4)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是S,求S与
10、n之间的关系式. http:/ w ww. xkb1. com课后记:新课 标 第 一 网19.1.2函数的图象-函数的图像及其画法学习目标:了解函数图象的意义,会观察函数图象获取信息,根据图象初步分析函数的对应关系和变化规律,经历画函数图象的过程,体会函数图象建立数形联系的关键是分别用点的横、纵坐标表示自变量和对应的函数值。学习重难点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。学习过程:一 、创设问题情境:有些问题中的函数关系很难列式子表示,但是可以用图来直观地反映,如心电图表示心脏部位的生物电流与时间的关系。即使能列式表示的函数关系,如果也能画图表示,那么使函数关系更
11、直观。二、 自主探究与合作交流:学生看P75-P79并思考以下问题:1、 什么是函数图像?2、如何作函数图像?具体步骤有哪些?3、如何判定一个图像是函数图像,你判断的依据是什么?4、有哪些方法表示函数关系?各自的优缺点是什么?(自学检测): 例:如图是自动测温仪记录的图象,它反映了北京的春季某天气温T如何随时间t变化而变化,你从图中得到了哪些信息?(1)这一天中 时气温最低;时气温最高;(2)从 时到 时气温呈下降趋势,从 时到 时气温呈上升趋势,从 时到 时气温又呈下降趋势;总结:l 正确理解函数图象与实际问题间的内在联系X K b1. C om 1、函数的图象是由一系列的点组成,图象上每一
12、点的坐标(x,y)代表了该函数关系的一对对应值。2、读懂横、纵坐标分别所代表的实际意义;3、读懂两个量在变化过程中的相互关系及其变化规律。三、巩固练习:例1、下图反映的过程是小明从家去食堂吃早餐,接着去图书馆读报,然后回家其中x表示时间,y表示小明离家的距离,小明家、食堂、图书馆在同一直线上根据图象回答下列问题:(1)食堂离小明家多远?小明从家到食堂用了多少时 间?(2)小明在食堂吃早餐用了多少时间?(3)食堂离图书馆多远?小明从食堂到图书馆用了多 少时间?(4)小明读报用了多长时间?(5)图书馆离小明家多远?小明从图书馆回家的平均速度是多少?2、下列式子中,对于x每一个确定的值,y有唯一的对
13、应值,即y是x的函数,请画出这些函数的图象解:(1)1、列表:xy2、描点:3、连线。(2)判断下列各点是否在函数 的图象上?(-4,-4.5); (4,4.5)1、列表:xy2、描点:3、连线。判断下列各点是否在函数 的图象上? (2,3);(4,2)归纳 画函数图象的一般步骤:列表、描点、连线,这种画函数图象的方法称为描点法四、达标测试:1若点p在第二象限,且p点到x轴的距离为,到y轴的距离为1,则p点的坐标是( )A.(1,)B.(,1)C.(,1)D.(1,)2下列函数中,自变量取值范围选取错误的是( )A 中,x取全体实数 B 中, C 中, D 中, 3、下列各曲线中哪些表示y是x
14、的函数?(提示:当x=时,x的函数y只能有一个函数值) 4小明的父亲饭后出去散步,从家中走20分钟到一个离家900米的报亭看10分钟报纸后,用15分钟返回家里图中表示小明的父亲离家的时间与距离之间的关系是( )5某运动员将高尔夫球击出,描绘高尔夫球击出后离原处的距离与时间的函数关系的图像可能为( ) 6飞机起飞后所到达的高度与时间有关,描绘这一关系的图像可能为( ) 7、假定甲、乙两人在一次赛跑中,路程S与时间T的关系在平面直角坐标系中所示,如图,请结合图形和数据回答问题:(1)这是一次 米赛跑;(2)甲、乙两人中先到达终点的是 ;(3)乙在这次赛跑中的速度为 ; (4)甲到达终点时,乙离终点
15、还有米。新|课 |标|第 |一| 网课后记:19.1.2函数的图象-描述函数的方法及函数的应用学习目标:总结函数三种表示方法毛了解三种表示方法的优缺点新课 标 第 一 网会根据具体情况选择适当方法教学重点:认清函数的不同表示方法,知道各自优缺点能按具体情况选用适当方法教学难点:函数表示方法的应用学习过程:一、提出问题,创设情境上节课里已经看到或亲自动手用列表格写式子和画图象的方法表示了一些函数这三种表示函数的方法分别称为列表法、解析式法和图象法那么,请同学们思考一下,从前面的例子看,你认为三种表示函数的方法各有什么优缺点?在遇到具体问题时,该如何选择适当的表示方法呢?二、 自主学习与合作探究:
16、例:一水库的水位在最近5小时内持续上涨,下表记录了这5小时的水位高度t/时012345y/米1010051010101510201025、在平面直角坐标系中描出表中数据对应的点,这些点是否在同一条直线上?由此你能发现水位变化有什么规律吗? 2、水位高度y是否是t的函数?如果是,试写出一个符合表中数据的解析式,并画出这个函数的图像。这个函数能表示水位变化的规律吗?3、据估计这种上涨的情况还会持续2小时,预测再过2小时水位高度将达到多少米?X|k | B| 1 . c|O |m三、巩固练习:例用列表法与解析式法表示n边形的内角和m是边数n的函数 例用解析式与图象法表示等边三角形周长L是边长a的函数
17、http:/ w ww. xkb1. coml 总结:这三种表示函数的方法各有优缺点。1用解析法表示函数关系优点:简单明了。能从解析式清楚看到两个变量之间的全部相依关系,并且适合进行理论分析和推导计算。缺点:在求对应值时,有时要做较复杂的计算。2用列表表示函数关系优点:对于表中自变量的每一个值,可以不通过计算,直接把函数值找到,查询时很方便。缺点:表中不能把所有的自变量与函数对应值全部列出,而且从表中看不出变量间的对应规律。3用图象法表示函数关系优点:形象直观,可以形象地反映出函数关系变化的趋势和某些性质,把抽象的函数概念形象化。缺点:从自变量的值常常难以找到对应的函数的准确值。函数的三种基本
18、表示方法,各有各的优点和缺点,因此,要根据不同问题与需要,灵活地采用不同的方法。在数学或其他科学研究与应用上,有时把这三种方法结合起来使用,即由已知的函数解析式,列出自变量与对应的函数值的表格,再画出它的图象。四、达标测试: 甲车速度为20米秒,乙车速度为25米秒现甲车在乙车前面500米,设x秒后两车之间的距离为y米求y随x(0x100)变化的函数解析式,并画出函数图象课后记:19.2.1正比例函数(1)学习目标:1、能够判断两个变量是否能够构成正比例函数关系,理解正比例函数的概念。2、根据已知条件写出正比例函数的解析式。3、能够利用正比例函数解决简单的数学问题学习重点:正比例函数的概念学习难
19、点:根据已知条件写出正比例函数的解析式。学习过程:一、 创设问题情境:函数的表示方法有哪些?二、 自主学习与合作探究:1、 问题:2011年开始运营的京沪高速铁路全长1318,设列车的平均速度为300。考虑以下问题:(1) 乘京沪高铁列车,从始发站北京南站到终点站上海虹桥站,约需多少小时?(结果保留小数点后一位)(2) 京沪高铁列车的行程y(单位:)与运行时间t(单位:h)之间有何数量关系?(3) 京沪高铁列车从北京南站出发2.5小时后,是否已经超过了始发站1100的南京南站?新课 标 第 一 网2、完成书本86-87页思考:观察“思考”中所得的四个函数; (1)观察这些函数关系式,这些函数都
20、是常数与自变量 的形式,(2)一般地,形如 ( )函数,叫做正比例函数,其中叫做 。思考:为什么强调是常数,0 ? (3)、列举日常生活中正比例函数的模型,你知道多少?3、 自学检测:(1)、下列函数哪些是正比例函数?y= y= y=-+1 y=2x y=x+1 y=(a+1)x+2(2)、若y=5x是正比例函数,则m=_.(3)、若y=(m-2)x是正比例函数,则m=_. 三、巩固练习:例1、已知与成正比例,且。(1)求与 之间的函数关系式;(2)若点(,2)在函数图像上,求的值。例2、已知与成正比例,且与。(1)、求与 之间的函数关系式;(2)、求当时的函数值;(3)、如果的取值范围为,求
21、的取值范围。四、达标测试:1、汽车以40千米/时的速度行驶,行驶路程y(千米)与行驶时间x(小时)之间的函数解析式为_.y是x的_函数。2、 圆的面积y(cm)与它的半径x(cm)之间的函数关系式是_.y是x的_函数。新- 课 -标 -第 -一 - 网3、 y=, y=, y=3x+9, y=2x中,正比例函数是_.4、若是正比例函数,则 5、若y与x-1成正比例,x=8时,y=6。写出x与y之间的函数关系式,并分别求出x=4和x=-3时的值6.若y=y+y,y与x成正比例,y与x-2成正比例,当x=1时,y=0,当x=-3时,y=4。求当x=3时的函数值。课后记:19.2.1正比例函数(2)
22、学习目标:1、会画正比例函数的图像。2、根据图像说出正比例函数的性质,渗透数形结合思想。学习重点:正比例函数的图像和性质学习难点:数形结合思想研究正比例函数的性质。学习过程:一、 创设问题情境:1、下列式子中,哪些是正比例函数,哪些不是,为什么? (2) (3) (5) 2、画函数图像的步骤有哪些?二、自主学习与合作探究:1、 画出下列正比例函数的图像:(1)、, (2), 2、观察上题画函数,完成下列问题:新 课 标 第 一 网(1)正比例函数是一条 ,它一定经过 。(2)因为过 点有且只有一条直线,我们在画正比例函数图象时,只需确定两点,通常是( , )和( , ) (3)当k 0时,直线
23、经过 象限,随的增大而 当k0时,直线经过 象限,随的减小而 2、 既然正比例函数的图像是一条直线,那么最少几个点就可以画出这条直线?怎样画最简单?试一试:用最简单的方法画出下列函数的图像 (1)、 y=-3x (2) y=x解:(1)当x=_时,y=_, 解:当x=_时,y=_,取点_和_,(2)描点、连线得:三、巩固练习:例1、在同一坐标系中,分别作出下列函数的图像。例2、已知函数是关于的正比例函数(1)求正比例函数的解析式。(2)画出它的图象。(3)若它的图象有两点,当时,试比较的大小四、达标测试:1、 函数y=kx(k0)的图像过P(-3,7),则k=_,图像过_象限。2、 在函数y=
24、2x的自变量中任意取两个点x,x,若xx,则对应的函数值y与y的大小关系是y_y. X|k | B| 1 . c|O |mACBxyxyxyxyooooD3、当时,正比例函数y=kx的大致图像是( )4、在直角坐标系中两条直线与相交于点A,直线与轴交于点B,若ABC的面积为12,求的值。课后记:19.2.2一次函数 (1)学习目标:1、理解正比例函数、一次函数的概念。2、会根据数量关系,求正比例函数、一次函数的解析式。3、会求一次函数的值。学习重点:一次函数函数的概念和解析式。学习难点:根据已知信息写出一次函数的表达式,确定自变量的取值范围学习过程:一、创设问题情境:某登山队大本营所在地的气温
25、为15,海拔每升高1km气温下降6登山队员由大本营向上登高xkm时,他们所处位置的气温是y(1)试用解析式表示y与x的关系二、自主学习与合作探究:1、自学课本8990页,回答下列问题:(1)、一颗树现在高60 cm,每个月长高2 cm,x月之后这棵树的高度为h cm,则h关于x的函数解析式为_.(2)、有人发现,在2025时蟋蟀每分钟鸣叫次数C与温度t()有关,即C的值约是t的7倍与35的差 (3)、某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按01分收取) (4)、把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化. 上
26、面这些函数的形式都是自变量x的k(常数)倍与一个常数的和 如果我们用b来表示这个常数的话这些函数形式就可以写成: 2.一次函数的概念一般地,形如 的函数,叫做一次函数当b=0时,y=kx+b即y=kx所以说正比例函数是一种特殊的一次函数3、对一次函数概念内涵和外延的把握:(1)自变量系数(常数)k0;(2)自变量x的次数为1;4、随堂练习:1、 (1)下列函数中,是一次函数的有_,是正比例函数的有_(1) (2) (3) (4)(5) (6) (7)2、若函数y=(m-1)x+m是关于x的一次函数,试求m的值.三、巩固练习:例1、已知函数y=(2-m)x+2m-3.求当m为何值时, (1)此函
27、数为正比例函数? (2)此函数为一次函数?例2、函数当时,当时,求。例3、某工厂生产某种产品,每件产品的出厂价为50元成本为20元,因为在生产过程中每件产品有0.5污水排放,所以为了净化环境,工厂设计两种方案对污水进行处理,并准备实施,方案一,工厂污水先净化后再排放,每处理1所需原料费2元,并且每月排污设备损耗费30000元;方案二,工厂将污水排放到污水厂统一处理,每处理1需付14元排污费,问:假如工厂每月生产量为6000件产品时,你若作为厂长,在不污染环境,又节约资金的前提下,应选用哪种污水处理方案,请计算加以说明。四、达标测试:1、若函数是正比例函数,则b = _2、在一次函数中,k =_
28、,b =_3、若函数是一次函数,则m_4、下列说法不正确的是( ) (A)一次函数不一定是正比例函数 (B)不是一次函数就一定不是正比例函数(C)正比例函数是特定的一次函数 (D)不是正比例函数就不是一次函数5、仓库内原有粉笔400盒,如果每个星期领出36盒,则仓库内余下的粉笔盒数Q与星期数t之间的函数关系式是_,它是_函数。6、一个小球由静止开始在一个斜坡向下滚动,其速度每秒增加2米。(1)求小球速度v随时间t变化的函数关系式,它是一次函数吗?(2)求第2.5秒时小球的速度?7、函数当时,当时,求此函数的解析式。新|课 |标|第 |一| 网课后记:19.2.2 一次函数 (2)学习目标:、知
29、道一次函数图象的特点,会熟练地画一次函数的图象。毛 、知道一次函数与正比例函数图象之间的关系。 、掌握一次函数的性质。学习重点:一次函数图象的特点、画法及性质学习难点:k、b的值与图象的位置关系。学习过程:w W w .X k b 1. c O m一、创设问题情境:什么叫一次函数?它的一般形式是什么?二、自主学习与合作探究:你们知道一次函数是什么形状吗? 那就让我们一起做一做,看一看。1、画出函数y=-6x,y=-6x+5,y=-6x-5的图象(在同一坐标系内) 【思考】请你比较上面三个函数的图象的相同点与不同点,填出你的观察结果:这三个函数的图象形状都是 ,并且倾斜程度 ;函数y=-6x的图
30、象经过(0,0);函数y=-6x+5的图象与y轴交于点 ,即它可以看作由直线y=-6x向 平移 个单位长度而得到的;函数y=-6x-5的图象与y轴交点是 ,即它可以看作由直线y=-6x向 平移 个单位长度而得到的;比较三个函数解析式,试解释这是为什么?【猜想】联系上面例子考虑一次函数y=kx+b的图象是什么形状,它与直线y=kx有什么关系?归纳平移法则:一次函数y=kx+b的图象是一条 ,我们称它为直线y=kx+b,它可以看作由直线y=kx平移 个单位长度而得到(当b0时,向 平移;当b2时,y=_;y与x的函数解析式也可合起来表示为_(3) 画函数图像。X k B 1 . c o m三、巩固
31、练习:例1、已知函数,(1)、若函数图像过(-1,2),求此函数的解析式。(2)、若函数图像与直线平行,求其函数的解析式。(3)、求满足(2)条件的直线与直线的交点,并求出这两条直线与轴所围成三角形的面积。例2、某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时血液中含药量最高,达每毫升6微克(1000微克=毫克),接着逐渐减少,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量y(微克)随时间(小时)的变化如图所示当成人按规定剂量服药后:(1)分别求出2和2时,y与之间的函数关系式;(2)如果每毫升血液中含药量为4微克或4微克以上时,在治疗疾病时是有
32、效的,那么这个有效时间是多长?X|k | B| 1 . c|O |m四、达标测试:1一次函数的图象经过点A(-2,-1),且与直线y=2x-3平行,则此函数的解析式为( )Ay=x+1 By=2x+3 Cy=2x-1 Dy=-2x-52、如图点P按的顺序在边长为l的正方形边上运动,M是CD边上的中点设点P经过的路程为自变量,APM的面积为,则函数的大致图象是( )3、已知弹簧的长度y(厘米)在一定的限度内是所挂重物质量x(千克)的一次函数现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米求这个一次函数的关系式课后记:19.2.3一次函数与一元一次方程学习目标:1、理解一次函数与一元一次方程的关系,会根据图象解决一元一次方程求解问题。2、学习用函数的