《2016年高考真题----理科数学(全国乙卷)Word版含答案.doc》由会员分享,可在线阅读,更多相关《2016年高考真题----理科数学(全国乙卷)Word版含答案.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、试题类型:A2016年普通高等学校招生全国统一考试理科数学第卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合,则(A)(B)(C)(D)(2)设,其中x,y是实数,则(A)1(B)(C)(D)2(3)已知等差数列前9项的和为27,则(A)100(B)99(C)98(D)97(4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(A)(B)(C)(D)(5)已知方程 =1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围
2、是(A)(1,3) (B)(1,) (C)(0,3) (D)(0,)(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是(A)17(B)18(C)20(D)28学.科网(7)函数y=2x2e|x|在2,2的图像大致为(A) (B)(C) (D)(8)若,则(A)(B)(C)(D)(9)执行右面的程序图,如果输入的,则输出x,y的值满足(A)(B)(C)(D)(10)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的标准线于D、E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8(11)平面a
3、过正方体ABCD-A1B1C1D1的顶点A,a/平面CB1D1,平面ABCD=m,平面ABA1B1=n,则m、n所成角的正弦值为(A)(B) (C) (D)12.已知函数为的零点学.科网,为图像的对称轴,且在单调,则的最大值为(A)11(B)9(C)7(D)5第II卷本卷包括必考题和选考题两部分.第(13)题第(21)题为必考题,每个试题考生都必须作答.第(22)题第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=.(14)的展开式中,x3的系数是.(用数字填写答案)(15)设等
4、比数列满足a1+a3=10,a2+a4=5,则a1a2an的最大值为。(16)某高科技企业生产产品A和产品B需要甲、乙两种新型材料。生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元。学.科网该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元。三.解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本题满分为12分)的内角A,B,C的对边分别别为a,b,c,已知(I)求C;(II)若
5、的面积为,求的周长(18)(本题满分为12分)如图,在已A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,且二面角D-AF-E与二面角C-BE-F都是(I)证明平面ABEFEFDC;(II)求二面角E-BC-A的余弦值(19)(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零
6、件数的频率代替1台机器更换的易损零件数发生的概率,记表示2台机器三年内共需更换的易损零件数,表示购买2台机器的同时购买的易损零件数.(I)求的分布列;(II)若要求,确定的最小值;(III)以购买易损零件所需费用的期望值为决策依据,在与之中选其一,应选用哪个?20. (本小题满分12分)设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(I)证明为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.(21)(本小题满分12分)已知
7、函数有两个零点.(I)求a的取值范围;(II)设x1,x2是的两个零点,证明:+x22.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:几何证明选讲如图,OAB是等腰三角形,AOB=120.以O为圆心,OA为半径作圆.(I)证明:直线AB与O相切;(II)点C,D在O上,且A,B,C,D四点共圆,证明:ABCD.(23)(本小题满分10分)选修44:坐标系与参数方程在直线坐标系xoy中,曲线C1的参数方程为(t为参数,a0)。在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:=cos.(I)说明C1是哪
8、种曲线,并将C1的方程化为极坐标方程;(II)直线C3的极坐标方程为,学.科网其中满足tan=2,若曲线C1与C2的公共点都在C3上,求a。(24)(本小题满分10分),选修45:不等式选讲已知函数f(x)= x+1-2x-3.(I)在答题卡第(24)题图中画出y= f(x)的图像;(II)求不等式f(x)1的解集。2016年新课标I高考数学(理科)答案与解析1,故故选D2由可知:,故,解得:所以,故选B3由等差数列性质可知:,故,而,因此公差故选C4如图所示,画出时间轴:小明到达的时间会随机的落在图中线段中,而当他的到达时间落在线段或时,才能保证他等车的时间不超过10分钟根据几何概型,所求概
9、率故选B5表示双曲线,则由双曲线性质知:,其中是半焦距焦距,解得故选A6原立体图如图所示:是一个球被切掉左上角的后的三视图表面积是的球面面积和三个扇形面积之和故选A7,排除A,排除B时,当时,因此在单调递减,排除C故选D8对A:由于,函数在上单调递增,因此,A错误对B:由于,函数在上单调递减,B错误对C:要比较和,只需比较和,只需比较和,只需和构造函数,则,在上单调递增,因此又由得,C正确对D:要比较和,只需比较和而函数在上单调递增,故又由得,D错误故选C9如下表:循环节运行次数判断是否输出运行前01/1第一次否否第二次否否第三次是是输出,满足故选C10以开口向右的抛物线为例来解答,其他开口同
10、理设抛物线为,设圆的方程为,题目条件翻译如图:F设,点在抛物线上,点在圆上,点在圆上,联立解得:,焦点到准线的距离为故选B11如图所示:,若设平面平面,则又平面平面,结合平面平面,故同理可得:故、的所成角的大小与、所成角的大小相等,即的大小而(均为面对交线),因此,即故选A12由题意知:则,其中在单调,接下来用排除法若,此时,在递增,在递减,不满足在单调若,此时,满足在单调递减故选B13由已知得:,解得14设展开式的第项为,当时,即故答案为1015由于是等比数列,设,其中是首项,是公比,解得:故,当或时,取到最小值,此时取到最大值所以的最大值为6416设生产A产品件,B产品件,根据所耗费的材料
11、要求、工时要求等其他限制条件,构造线性规则约束为目标函数作出可行域为图中的四边形,包括边界,顶点为在处取得最大值,17由正弦定理得:,由余弦定理得:周长为18为正方形面面平面平面由知平面平面平面平面面面四边形为等腰梯形以为原点,如图建立坐标系,设 ,设面法向量为.,即设面法向量为.即设二面角的大小为.二面角的余弦值为19每台机器更换的易损零件数为8,9,10,11记事件为第一台机器3年内换掉个零件记事件为第二台机器3年内换掉个零件由题知,设2台机器共需更换的易损零件数的随机变量为,则的可能的取值为16,17,18,19,20,21,2216171819202122要令,则的最小值为19购买零件
12、所需费用含两部分,一部分为购买机器时购买零件的费用,另一部分为备件不足时额外购买的费用当时,费用的期望为当时,费用的期望为所以应选用20圆A整理为,A坐标,如图,则,由,则所以E的轨迹为一个椭圆,方程为,();设,因为,设,联立得;则;圆心到距离,所以,21由已知得:若,那么,只有唯一的零点,不合题意;若,那么,所以当时,单调递增当时,单调递减即:极小值故在上至多一个零点,在上至多一个零点由于,则,根据零点存在性定理,在上有且仅有一个零点而当时,故则的两根, ,因为,故当或时,因此,当且时,又,根据零点存在性定理,在有且只有一个零点此时,在上有且只有两个零点,满足题意若,则,当时,即,单调递增
13、;当时,即,单调递减;当时,即,单调递增即:+0-0+极大值极小值而极大值故当时,在处取到最大值,那么恒成立,即无解而当时,单调递增,至多一个零点此时在上至多一个零点,不合题意若,那么当时,即,单调递增当时,即,单调递增又在处有意义,故在上单调递增,此时至多一个零点,不合题意若,则当时,即,单调递增当时,即,单调递减当时,即,单调递增即:+0-0+极大值极小值故当时,在处取到最大值,那么恒成立,即无解当时,单调递增,至多一个零点此时在上至多一个零点,不合题意综上所述,当且仅当时符合题意,即的取值范围为由已知得:,不难发现,故可整理得:设,则那么,当时,单调递减;当时,单调递增设,构造代数式:设,则,故单调递增,有因此,对于任意的,由可知、不可能在的同一个单调区间上,不妨设,则必有令,则有而,在上单调递增,因此:整理得:22设圆的半径为,作于与相切方法一:假设与不平行与交于四点共圆由可知矛盾方法二:因为,因为所以为的中垂线上,同理所以的中垂线,所以23(均为参数)为以为圆心,为半径的圆方程为即为的极坐标方程两边同乘得即:化为普通方程为由题意:和的公共方程所在直线即为得:,即为24如图所示:当,解得或当,解得或或当,解得或或综上,或或,解集为20