《中考数学三角形专题总复习.doc》由会员分享,可在线阅读,更多相关《中考数学三角形专题总复习.doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、中考数学三角形专题总复习一、考试目标要求: 1了解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中线和高,了解三角形的稳定性.2探索并掌握三角形中位线的性质.3了解全等三角形的概念,探索并掌握两个三角形全等的条件.4了解等腰三角形的有关概念,探索并掌握等腰三角形的性质和一个三角形是等腰三角形的条件;了解等边三角形的概念并探索其性质.5了解直角三角形的概念,探索并掌握直角三角形的性质和一个三角形是直角三角形的条件.6体验勾股定理的探索过程,会运用勾股定理解决简单问题;会用勾股定理的逆定理判定直角三角形.二、知识考点梳理知识点一、三角形的概念及其性质1三角形的概念由
2、不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2三角形的分类(1)按边分类:(2)按角分类: 3三角形的内角和外角(1)三角形的内角和等于180.(2)三角形的任一个外角等于和它不相邻的两个内角之和;三角形的一个外角大于任何一个和它不相邻 的内角.4三角形三边之间的关系三角形任意两边之和大于第三边,任意两边之差小于第三边.5三角形内角与对边对应关系在同一个三角形内,大边对大角,大角对大边;在同一三角形中,等边对等角,等角对等边.6三角形具有稳定性. 知识点二、三角形的“四心”和中位线三角形中的四条特殊的线段是:高线、角平分线、中线、中位线. 1内心: 三角形角平分线的交点,是三角
3、形内切圆的圆心,它到各边的距离相等.2外心: 三角形三边垂直平分线的交点,是三角形外接圆的圆心,它到三个顶点的距离相等.3重心: 三角形三条中线的交点,它到每个顶点的距离等于它到对边中点距离的2倍.4垂心: 三角形三条高线的交点.5三角形的中位线: 连结三角形两边中点的线段是三角形的中位线.中位线定理:三角形的中位线平行于第三边且等于第三边的一半.要点诠释:(1)三角形的内心、重心都在三角形的内部.(2)钝角三角形的垂心、外心都在三角形的外部.(3)直角三角形的垂心为直角顶点,外心为直角三角形斜边的中点.(4)锐角三角形的垂心、外心都在三角形的内部.知识点三、全等三角形1定义: 能完全重合的两
4、个三角形叫做全等三角形.2性质:(1)对应边相等(2)对应角相等(3)对应角的平分线、对应边的中线和高相等(4)周长、面积相等3判定: (1)边角边(SAS)(2)角边角(ASA)(3)角角边(AAS)(4)边边边(SSS)(5)斜边直角边(HL)(适用于直角三角形)要点诠释:判定三角形全等至少必须有一组对应边相等.知识点四、等腰三角形1定义: 有两条边相等的三角形叫做等腰三角形.2性质: (1)具有三角形的一切性质.(2)两底角相等(等边对等角)(3)顶角的平分线,底边中线,底边上的高互相重合(三线合一)(4)等边三角形的各角都相等,且都等于60.3判定: (1)如果一个三角形有两个角相等,
5、那么这两个角所对的边也相等(等角对等边);(2)三个角都相等的三角形是等边三角形;(3)有一个角为60的等腰三角形是等边三角形.要点诠释:(1)腰、底、顶角、底角是等腰三角形特有的概念;(2)等边三角形是特殊的等腰三角形.知识点五、直角三角形1定义: 有一个角是直角的三角形叫做直角三角形.2性质: (1)直角三角形中两锐角互余;(2)直角三角形中,30锐角所对的直角边等于斜边的一半.(3)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30.(4)勾股定理:直角三角形中,两条直角边的平方和等于斜边的平方.(5)勾股定理逆定理:如果三角形的三边长a,b,c满足a2+b
6、2=c2,那么这个三角形是直角三角形.(6)直角三角形中,斜边上的中线等于斜边的一半;(7)SRtABC= ch= ab,其中a、b为两直角边,c为斜边,h为斜边上的高.3判定: (1)两内角互余的三角形是直角三角形;(2)一条边上的中线等于该边的一半,则这条边所对的角是直角,则这个三角形是直角三角形.(3)如果三角形两边的平方和等于第三边的平方,则这个三角形是直角三角形,第三边为斜边.知识点六、线段垂直平分线和角平分线1线段垂直平分线: 经过线段的中点并且垂直这条线段的直线,叫做这条线段的垂直平分线.线段垂直平分线的定理:(1)线段垂直平分线上的点与这条线段两个端点的距离相等.(2)与一条线
7、段两个端点距离相等的点,在这条线段的垂直平分线上.线段垂直平分线可以看作是与线段两个端点距离相等的所有点的集合.2角平分线的性质: (1)角的平分线上的点到角的两边的距离相等;(2)到角的两边的距离相等的点在角的平分线上;(3)角的平分线可以看做是到角的两边距离相等的所有点的集合.四、规律方法指导1数形结合思想本单元中所学的三角形性质、角平分线性质、全等三角形的性质、直角三角形中的勾股定理等,都是在结合图形的基础上,求线段或角的度数,证明线段或角相等.在几何学习中,应会利用几何图形解决实际问题.2分类讨论思想在没给图形的前提下,画三角形或三角形一边上的高、三角形的垂心、外心时要考虑分类:三种情
8、况,锐角三角形、直角三角形、钝角三角形.3. 化归与转化思想在解决利用三角形的基础知识计算、证明问题时,通过做辅助线、利用所学知识进行准确推理等转化手段,归结为另一个相对较容易解决的或者已经有解决模式的问题,已知与未知之间的转化;数与形的转化;一般与特殊的转化.4注意观察、分析、总结应将三角形的判定及性质作为重点,对于特殊三角形的判定及性质要记住并能灵活运用,注重积累解题思路和运用数学思想和方法解决问题的能力和培养,淡化纯粹的几何证明.学会演绎推理的方法,提高逻辑推理能力和逻辑表达能力,掌握几何证明中的分析,综合,转化等数学思想.经典例题透析考点一、三角形的概念及其性质 1(1)(2010山东
9、济宁)若一个三角形三个内角度数的比为234,那么这个三角形是( )A. 直角三角形 B. 锐角三角形 C. 钝角三角形 D. 等边三角形 (2)三角形的三边分别为3,1-2a,8,则a的取值范围是( )A-6a-3 B-5a-2 C2a5 Da-5或a-2.【变式1】如果三角形的一个内角等于其他两个内角的和,这个三角形是( )A.锐角三角形 B.钝角三角形 C.直角三角形 D.不能确定【变式2】下列命题:(1)等边三角形也是等腰三角形;(2)三角形的外角等于两个内角的和;(3)三角形中最大的内角不能小于60;(4)锐角三角形中,任意两内角之和必大于90,其中错误的个数是( )A.0 个 B.1
10、个 C.2个 D.3个考点二、三角形的“四心”和中位线 1(1)与三角形三个顶点距离相等的点是这个三角形的( ) A.二条中线的交点 B. 二条高线的交点C.三条角平分线的交点 D.三边中垂线的交点 2一个三角形的内心在它的一条高线上,则这个三角形一定是( ) A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.等边三角形【变式1】如图,已知ABC中,A=58,如果(1)O为外心;(2)O为内心;(3)O为垂心;分别求BOC的度数.【变式2】如果一个三角形的内心,外心都在三角形内,则这个三角形是( )A.锐角三角形 B.只有两边相等的锐角三角形C.直角三角形 D.锐角三角形或直角三角形【变式3】能把一个三角形分成两个面积相等的三角形的线段,是三角形的( )A.中线 B.高线 C.边的中垂线D.角平分线中考数学总复习专题训练角、相交线与平行线1.一对邻补角的角平分线的夹角是_度。2.一个角的补角比这个角的余角大_度。3.把一段弯曲的公路改为直路,可以缩短路程,其理由是:_。4.如果A3518,那么A的余角等于_。5如果两个角的两边分别平行且一个角比另一个角的3倍少30,则这两个角的度数分别为_。