《集合的含义与表示(1)学案.doc》由会员分享,可在线阅读,更多相关《集合的含义与表示(1)学案.doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1.1.1 集合的含义与表示(1)导学案【学习目标】1. 了解集合的含义,体会元素与集合的“属于”关系;2. 能选择自然语言、集合语言(列举法)描述不同的具体问题,感受集合语言的意义和作用;3. 掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.【重点难点】重点:掌握集合的基本概念。难点:元素与集合的关系。【知识链接】认真阅读教材P1-P3,对照【学习目标】,完成导学案,适当总结。(预习教材P2 P3,找出疑惑之处)讨论:军训前学校通知:8月15日上午8点,高一年级在体育馆集合进行军训动员. 试问这个通知的对象是全体的高一学生还是个别学生?引入:在这里,集合是我们常用的一个词语,我们感
2、兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念集合,即是一些研究对象的总体.集合是近代数学最基本的内容之一,许多重要的数学分支都建立在集合理论的基础上,它还渗透到自然科学的许多领域,其术语的科技文章和科普读物中比比皆是,学习它可为参阅一般科技读物和以后学习数学知识准备必要的条件.【学习过程】 探索新知探究1:考察几组对象: 120以内所有的质数; 到定点的距离等于定长的所有点; 所有的锐角三角形; , , , ; 东升高中高一级全体学生; 方程的所有实数根; 隆成日用品厂2008年8月生产的所有童车; 2008年8月,广东所有出生婴儿
3、.试回答:各组对象分别是一些什么?有多少个对象?新知1:一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set).试试1:探究1中都能组成集合吗,元素分别是什么?探究2:“好心的人”与“1,2,1”是否构成集合?新知2:集合元素的特征对于一个给定的集合,集合中的元素是确定的,是互异的,是无序的,即集合元素三特征.确定性:某一个具体对象,它或者是一个给定的集合的元素,或者不是该集合的元素,两种情况必有一种且只有一种成立.互异性:同一集合中不应重复出现同一元素.无序性:集合中的元素没有顺序.只要构成两个集合的元素是一样的,我们称这两个集合 .试试2:分析下列对象,
4、能否构成集合,并指出元素: 不等式的解; 3的倍数; 方程的解; a,b,c,x,y,z; 最小的整数; 周长为10 cm的三角形; 中国古代四大发明; 全班每个学生的年龄; 地球上的四大洋; 地球的小河流.探究3:实数能用字母表示,集合又如何表示呢?新知3:集合的字母表示集合通常用大写的拉丁字母表示,集合的元素用小写的拉丁字母表示.如果a是集合A的元素,就说a属于(belong to)集合A,记作:aA;如果a不是集合A的元素,就说a不属于(not belong to)集合A,记作:aA.试试3: 设B表示“5以内的自然数”组成的集合,则5 B,0.5 B, 0 B, 1 B.探究4:常见的
5、数集有哪些,又如何表示呢?新知4:常见数集的表示非负整数集(自然数集):全体非负整数组成的集合,记作N;正整数集:所有正整数的集合,记作N*或N+; 整数集:全体整数的集合,记作Z;有理数集:全体有理数的集合,记作Q;实数集:全体实数的集合,记作R.试试4:填或:0 N,0 R,3.7 N,3.7 Z, Q, R.探究5:探究1中分别组成的集合,以及常见数集的语言表示等例子,都是用自然语言来描述一个集合. 这种方法语言文字上较为繁琐,能否找到一种简单的方法呢?新知5:列举法把集合的元素一一列举出来,并用花括号“ ”括起来,这种表示集合的方法叫做列举法.注意:不必考虑顺序,“,”隔开;a与a不同
6、.试试5:试试2中,哪些对象组成的集合能用列举法表示出来,试写出其表示. 典型例题例1 用列举法表示下列集合: 15以内质数的集合; 方程的所有实数根组成的集合; 一次函数与的图象的交点组成的集合.变式:用列举法表示“一次函数的图象与二次函数的图象的交点”组成的集合.【基础达标】1. 下列说法正确的是().A某个村子里的高个子组成一个集合 B所有小正数组成一个集合C集合和表示同一个集合 D这六个数能组成一个集合2. 给出下列关系: ; ;其中正确的个数为( )A1个B2个 C3个D4个3. 直线与y轴的交点所组成的集合为( ).A. B. C. D. 4. 设A表示“中国所有省会城市”组成的集合,则: 深圳 A; 广州 A. (填或)5. “方程的所有实数根”组成的集合用列举法表示为_.【拓展提升】1. 用列举法表示下列集合:(1)由小于10的所有质数组成的集合;(2)10的所有正约数组成的集合;(3)方程的所有实数根组成的集合.2. 设xR,集合.(1)求元素x所应满足的条件;(2)若,求实数x.3. 已知集合,若,求实数的值【学习反思】1.集合的概念2.集合元素的三个特征:其中“集合中的元素必须是确定的”应理解为:对于一个给定的集合,它的元素的意义是明确的.“集合中的元素必须是互异的”应理解为:对于给定的集合,它的任何两个元素都是不同的.3.常见数集的专用符号。