《(完整word版)《集合的概念》教学设计.docx》由会员分享,可在线阅读,更多相关《(完整word版)《集合的概念》教学设计.docx(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、(完整word版)集合的概念教学设计 教学重点:集合的基本概念及表示方法。 教学难点:运用集合的两种常用表示方法列举法与描述法,正确表示 一些简单的集合。 六、教学过程 一、复习引入: 1简介数集的发展,复习最大公约数和最小公倍数,质数与和数; 2教材中的章头引言; 3集合论的创始人康托尔(德国数学家)(见附录); 4“物以类聚”,“人以群分”; 5教材中例子(P4) 二、讲解新课: 阅读教材第一部分,问题如下: (1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的? (3)集合中元素的特性是什么? (一)集合的有关概念: 由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的
2、.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素. 定义:一般地,某些指定的对象集在一起就成为一个集合 1、集合的概念 (1)集合:某些指定的对象集在一起就形成一个集合(简称集) (2)元素:集合中每个对象叫做这个集合的元素 2、常用数集及记法 (1)非负整数集(自然数集):全体非负整数的集合记作N, (2)正整数集:非负整数集内排除0的集记作N*或N+ (3)整数集:全体整数的集合记作Z , (4)有理数集:全体有理数的集合记作Q , (5)实数集:全体实数的集合记作R 注:(1)自然数集与非负整数集是相同的,
3、也就是说,自然数集包括数0 (2)非负整数集内排除0的集记作N*或N+ Q、Z、R等其它 数集内排除0的集,也是这样表示,例如,整数集内排除0 的集,表示成Z* 3、元素对于集合的隶属关系 (1)属于:如果a是集合A的元素,就说a属于A,记作aA (2)不属于:如果a不是集合A的元素,就说a不属于A,记作 4、集合中元素的特性 (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里, 或者不在,不能模棱两可 (2)互异性:集合中的元素没有重复 (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出) 5、集合通常用大写的拉丁字母表示,如A、B、C、P、Q 元素通常用小写的拉丁字母表示,如a、b、c、p、q