《2022苏教版六年级数学上册教案_3.docx》由会员分享,可在线阅读,更多相关《2022苏教版六年级数学上册教案_3.docx(49页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022苏教版六年级数学上册教案苏教版六年级数学上册教案1教学目标:1、使学生明确本学期的学习任务。2、使学生巩固五年级的相关学问,为新学问的学习奠定基础。教学过程:一、 课堂教学常规的说明:1、上课的各项要求说明等。2、练习的各项要求说明等。3、其他说明。二、 复习旧知:(一) 填空:1、分数单位是1/8的最大真分数是( ),最小假分数是( ),最小的带分数是( )。2、1米的3/7是( )米,3米的1/7是( )米。3、一座挂钟的分针长10厘米,时针长7厘米,一昼夜,分针尖端走了( )厘米,时针扫过了( )平方厘米。(二) 解决问题:1、一个正方形的周长与圆的周长相等,已知正方形的边长是3
2、.14米,圆的半径是多少米?2、把一些桃平均分给12只猴子,正好还剩1个;假如平均分给8只猴子,正好也剩1个。这些桃至少有多少个?3、甲、乙两车从两地同时相向而行,甲车在超过中点10千米的地方与乙车相遇,已知相遇时甲车行了140千米,乙车行了多少千米?4、一根钢管长3米,重4千克,这样的钢管每米重多少千克?1千克这样的钢管长多少米?5、甲6分钟做13个零件,乙8分钟做17个零件,丙12分钟做25个零件,比一比,他们谁做得最快?6、假如用两根长62.8厘米的绳子分别围成一个圆形和一个正方形,你觉得哪个图形的面积大些?大多少平方厘米?7、将一个直径是12厘米的圆分成64等份后,拼成一个近似的长方形
3、,这个长方形的长和宽各是多少厘米?面积是多少平方厘米?8、一满瓶油连瓶重650克,用去一半后连瓶重400克,瓶重多少千克?油重多少克?9、一个圆形花坛的周长是15.7米,在花坛四周铺一条宽0.5米的环形小路,这条小路的面积是多少平方米?10、一捆电线长178米,装了8盏电灯,还剩下4米,平均每盏灯用电线多少米?(只列方程)(三) 拓展练习:1、某汽车站有甲、乙、丙开往三地的汽车通过,甲车每隔15分钟开过此站,乙车每隔10分钟开过此站,丙车每隔12分钟开过此站。现三辆汽车在同一时刻从今站开过后,再过多少时间又同时从今站开过?2、(1)工人们修一段路,第一天修了马路全长的一半还多2千米,其次天修了
4、剩下的一半还少1千米,还剩20千米没有修完。马路的全长是多少千米?(2)有一桶油,每次抽出桶里油的一半,连续这样抽了5次后,桶里还有油10千克,求这个桶里原有油多少千克?3、周燕有一盒巧克力糖,7粒一数还余4粒,5粒一数还余2粒,3粒一数正好,这盒巧克力糖至少有多少粒?4、甲、乙两人原来一共有46元。甲买一本故事书用去12元,乙买一本科技书用去18元,这时两人剩下的钱正好相等。甲、乙两人原来各有多少元?5、马路上一排电线杆,共25根,每相邻两根间的距离原来都是45米,现在要改成60米,可以有几根不需移动?6、一个最简真分数的分子,分母是两个连续自然数,假如分母加上4,这个分数约分后是2/3,原
5、来这个分数是多少?苏教版六年级数学上册教案2教学目标1理解分数乘以整数的意义;驾驭计算法则;正确计算分数乘以整数的算式题。2浸透事物是相互联系、相互转化的辩证唯物主义观点。教学重点分数乘以整数的意义及计算方法。教学难点分数乘以整数的计算法则的推导。教具打算1自制两套三层复式投影片。2投影图片3张。教学过程设计(一)复习(出示投影一)1口算:问:怎样计算?(分母不变分子相加。)2依据题意列出算式:(1)5个12是多少?(2)3个14是多少?列式:(1)1212121212或125(2)141414或143题中的两个式子哪个简便?(125,143)它们各表示什么意思呢?(5个12是多少? 3个14
6、是多少?)能用一句话概括这两个乘法算式的意义吗?(就是求几个相同加数和的简便运算。)这是整数乘法的意义,它对于分数乘法适用吗?(二)讲授新课1分数乘以整数的意义。多少块?(投影)2份。)听回答,老师边重复边投影(三层复式投影片)。把一块蛋糕(出示一个圆)平均分成9份(覆盖平均分的9份),取其中2份(覆盖2份是红色的)。(3)依据图意列出算式。问:这个加法算式有什么特点?(三个加数相同。)问:为什么?(三个加数相同。)问:这个算式你们学过吗?它是什么数乘以什么数?(分数乘以整数。)师:这就是今日我们要学习的分数乘以整数。(板书课题)师:分数乘以整数表示什么意思呢?视察上面两个算式,并说出(分数乘
7、以整数的意义与整数乘法的意义相同,就是求几个相同加数练一练(投影片二)看图写算式。依据意义列式。看算式说意义。2分数乘以整数的法则。(1)推导法则。我们了解了分数乘以整数的意义,你想知道怎样计算吗?导出计算方法。你会计算吗?看哪些同学不用老师讲解就能依据转化思想把分数乘以整数这个新学问转化为已经学过的旧学问来进行计算。(可以相互说、相互看。)该怎么办呢?引导学生探讨得出:边加上虚线框。)(2)依据上面方法试算下面各题。(学生在练习本上做,用投影反馈。)归纳法则。通过以上几个式题的计算,想一想分数乘以整数怎样计算呢?师:比一比,看哪个组的同学总结的语言精确又简练。小组探讨,总结出法则。分数乘以整
8、数,用分数的分子和整数相乘的积作分子,分母不变。(板书)应用法则计算。有不一样的吗?强调结果化成带分数。还有不同的做法吗?探讨,这两种方法哪种简洁?为什么?强调:能约分,要先约分;结果是假分数肯定要化成整数或带分数。(三)巩固练习1看图写算式。第3页的第1题,看图写算式。(填书上)行间巡察,留意:被乘数和乘数的位置。2先说算式意义,再填空。3看算式,约分计算。4口算:5推断:(打手势)(四)课堂总结今日我们学习了什么内容?分数乘以整数的意义是什么?分数乘以整数的法则是什么?计算时应留意什么?(能约分要约分,结果是假分数,要化成整数或带分数。)课堂教学设计说明1确定教学目标、教材的重点难点,它对
9、整个教学过程具有导向、激励和评价作用。本节课的重点是分数乘以整数的意义与法则,难点是法则的推导。在设计教案中,以突出重点为中心,教法与内容设计要服务于中心。2依据学问的迁移,进行很必要的铺垫,利用学问之间的联系,细心设计复习题,为教学重点服务,使学生顺当驾驭分数乘以整数的意义与整数乘法意义相同。同时复习分数加法,为推导公式进行铺垫。3重视法则推导过程,应用转化思想,启发学生把新学问转化为已学过的旧学问。进一步了解学问之间的联系,适时点拨,激发学生主动探究新学问。老师有意识地让学生参加法则推导,让学生先尝试、视察、探讨、总结,而后再概括法则,使学生学得生动活泼,发挥小组的团结协作作用。在课堂上,
10、不仅有师生之间的信息沟通,而且还有同学之间的信息沟通。老师依据信息反馈,刚好对教学过程进行调控,以达到真正提高课堂教学的目的。苏教版六年级数学上册教案3教学说明:乘法运算定律的归纳、总结和运用对学生来说是一种实力的提高,它区分于一般计算的学习,须要学生有更强的视察实力和思维实力与之相协作,所以学习的困难会更大,特殊是合理运用乘法运算定律使一些计算简便这部分内容。本课是要完成的是乘法安排律的学习与探讨,下面就教学支配作简洁说明。一、 视察与思索:通过对例题和生活实例的视察、探讨和学习,初步感知乘法安排律,同时培育学生的视察实力和视察习惯,在生活中找寻和学习数学学问。二、 探讨与归纳:这是比视察与
11、思索更高层次的要求。在视察与思索的基础上,通过学生之间的合作,通过相互探讨、探讨、补充、完善,归纳出乘法安排律,从而使学生体验合作的重要性与必要性,体验胜利的喜悦,懂得合作,学会合作。三、 练习与提高:通过两部分内容的练习,进一步熟识、理解、相识和驾驭乘法安排律。四、 简便运算:完成例2的学习,这一部分内容的思索性比较强,特殊是对乘法运算定律的敏捷运用学生的困难较大,所以在教学时要区分对待。基本内容部分要求全体学生驾驭,也就是这一教学段的前三部分内容,这一教学段的最终一部分内容是为学有余力的学生打算的,让不同的学生有不同的收获,但同时获得胜利的体验。教学内容:乘法安排律 P28-29 例1、例
12、2教学目标:1、知道乘法安排律的字母表达式。2、懂得可以用乘法安排律把一个数与两个数的和相乘改写成两个积的和。3、会用乘法安排律使一些计算简便。教学重点:理解驾驭乘法安排律。教学难点:乘法安排律的得出及其运用。教学支配:一、 视察与思索:1、 出示例1:(1)看下图计算,有多少个小正方体?A、用实物演示引出两种算法。(5+3)2=16(个) 52+32=16(个)B、视察以上两式得到:(5+3)2=52+322、 出示生活实例:一件上衣30元,一条裤子20元。买4套这样的服装一共须要多少元钱?引导学生用两种方法解答,然后通过计算视察得出:(30+20)4=200(元) 304+204=200(
13、元)即:(30+20)4=304+2042角硬币和5角硬币各6枚,一共有多少钱?请学生同桌说说两种计算方法,然后汇报结果。(2+5)6=42(角) 26+56=42(角)即:(2+5)6=26+563、 请学生细致视察上面探讨得到的三组等式之间有什么相同的特点?(前后两式是相等的、先算和再算积与先算积再算和是一样的)这就是今日我们重点要探讨的乘法安排律。板书课题:乘法安排率二、 探讨与归纳:1、 出示问题,读读想想。A、 以上三组算式分别先算什么?再算什么?B、 它们之间有什么联系?先小组探讨,再派代表汇报沟通。得出乘法安排律的正确说法。看书,齐读乘法安排律。2、 质疑。为什么乘法安排律说:两
14、个数的和与一个数相乘而不是两个数的和去乘以一个数。?(两个数的和与一个数相乘,这个数可写在两数之和的前面,也可写在两数之和的后面,而两个数的和乘以一个数,这个数只能写在两数之和的后面。)3、 用字母表示乘法安排律。(A+B)C=AC+BC三、 练习:1、 依据乘法安排律填上适当的数或运算符号。(8+6)3=8363(25+9)40= 40+ 40(56+ )3=56 +82、 推断:13(4+8)=134+8 ( )13(4+8)=138+48 ( )13(4+8)=134+138 ( )四、 简便运算:1、 出示例2:(125+70)8请同桌两人右边的按运算依次算,左边的用乘法安排律先去掉括
15、号再算。算好后同桌视察探讨:怎样算比较好?为什么?老师总结:用乘法安排律能使一些计算简便。2、 选择题:1624+8424的简便算法是( )。A、(16+24)84 B、(16+84)24 C、(1684)243、 用简便方法计算下列各题(先同桌探讨,再独立完成)。(有的不会做的学生可以不做)(25+9)8 29175+2529 48128-2848 7599+754、在方框里填上适当的数,使算式能用简便方法计算,你有几种不同的填法。(不会做的学生可以不做)41+5923 +6328五、 小结:1、 乘法安排律及字母表达式。2、 运用乘法安排律应留意什么?运算符号 安排合理苏教版六年级数学上册
16、教案4教学内容:教材第36页例7、“练一练”,第39页练习六第1621题,思索题。教学目标:1使学生经验“找乘积是1的两个数”和“找一个数的倒数”的过程,相识和理解倒数的意义,驾驭求一个数的倒数的方法。2使学生在相识互为倒数的两个数的特点的过程中,发展视察,比较和抽象、概括等思维实力。教学重点、难点:理解倒数的意义,学会求一个数的倒数。教学过程:一、导入新课谈话:同学们,“挚友”这个词对我们来说已经特别熟识了,能说说教室里哪些同学是你的挚友吗?指名回答。谈话:在将近六年级学习生活中,许多同学生建立了深厚的友情,“挚友”是两个人之间的一种关系,在数学中,数与数之间也存在一些关系,比如两个数的乘积
17、是1,就可以说是这两个数之间的一种关系。哪些数之间有这种关系呢?怎样找这样的两个数呢?这是我们今日要探讨的问题。二、学习新知。1、理解倒数的意义。(1)出示例7,学生独立完成。(2)引出概念。乘积是1的两个数互为倒数。例如 和 互为倒数。可以说 是 的倒数, 是 的倒数。引导:请大家细致视察,刚才我们找出的这些算式有什么共同特点?学生沟通后明确:这些算式里两个数的乘积都是1.指出:像这样乘积是1的两个数互为倒数。(3)学生举例来说。进行刚好的评议。(4)追问:怎样的两个数互为倒数?为什么要说“互为倒数?”小结:倒数不是指一个详细的数,而是表示两个数之间的一种关系,当两个数乘积是1时,这两个数互
18、为倒数。2、归纳方法(1)提问:我们已经知道了乘积是1的两个数互为倒数,你能分别找出 和 的倒数吗?提问:视察上面互为倒数的各组数,它们的分子和分母位置发生了什么改变,把你的发觉与同桌沟通。小组探讨:引导视察倒数和原数的关系,想一想一个数的倒数与原数相比,分子、分母的位置发生了什么改变?指名回答:找一个分数的倒数只要交换分子、分母的位置。追问:0有倒数吗?为什么?1呢?指出:因为0和任何数相乘的积都不会是1,所以0没有倒数。1的倒数是1。除0以外,在求一个数的倒数时,只要把这个数的分子和分母调换位置即可。三、巩固练习。1、做练习六第17题。学生分别说出每个数的倒数,并选择几个数说说是怎样想的。
19、2、做练习六第18题学生独立宛成,再集体沟通,选择两题让学生说说思索的过程。3、做练习六第19题练习之前明确要求:视察每组的3个数有什么共同点,写出的倒数又有什么共同点,带着问题边写边视察。全班沟通结果,板书每组里各数的倒数。提问:你发觉每组数和它们倒数的特点了吗?把你的发觉和大家沟通。提出:从这四组数可以看出:真分数的倒数是假分数,大于1的假分数的倒数是真分数;几分之一的倒数是几,几的倒数是几分之一。4、做思索题。启发:联系倒数的意义想一想,要使三个分数乘积是1,板书:( )( )( )1必段符合什么条件?引导:通过交汉我们知道,三个分数乘积是1,其中两个分数的乘积和第三个分数互为倒数,你能
20、在这七个分数里分别找出这样的3个分数吗?试着找找看。学生先尝试练习,再集体沟通。四、全课总结这节课学习了什么内容?什么是倒数?怎样求一个数的倒数?五、作业补充习题。板书安排:倒数的相识乘积是1的两个数互为倒数。求一个数的倒数时,只要把这个数的分子和分母调换位置即可。苏教版六年级数学上册教案5第一单元 方 程教学内容:P7“回顾与整理”、“练习与应用”第14题教学目标:1、通过“回顾与整理”使学生逐步驾驭一些整理学问的方法,养成对所学学问分阶段进行整理的习惯。2、使学生进一步驾驭有关方程的解法,体会到列方程解决实际问题的基本思索方法,加深对列方程解决实际问题的理解,激发学生进一步信息方程、应用方
21、程的爱好。教学资源:小黑板教学过程:一、揭示课题本单元,我们主要学习了有关列方程解决实际问题的学问。今日我们要将这些学问进行整理一下。二、回顾与整理1、出示小组探讨题:(1)像3.4x1.88.6、5x-x24这样的方程各应怎样解?(2)在列方程解决实际问题时,可以怎样找数量之间的相等关系?举例说明。2、让学生围绕这两个问题进行独立思索。3、把各自思索的状况在小小组内进行沟通。4、全班沟通。探讨题(1) 可以让学生说说首先要将这样的方程作怎样的变形,并提示学生解方程时要养成检验的习惯。 探讨题(2)可以引导学生举例说说本单元学会了用方程解决哪些实际问题,并结合所举例子说明解决每一类问题的基本思
22、路。三、练习与应用1、解方程180+6x330 27x+31x145 x-0.8x102.2x-110 15x260 4x+x3.15(1)让学生独立完成,指名板演。(2)集体沟通时要关注学生解这些方程的精确率,并刚好引导学生总结解每一类方程的基本方法,反思解这些方程时可能遇到的问题。2、解决实际问题(1)南京长江大桥的铁路桥长6772米,马路桥长4589米。它的铁路桥比武汉长江大桥铁路桥的5倍多197米,马路桥比武汉长江大桥马路桥的3倍少421米。 武汉长江大桥铁路桥长多少米? 武汉长江大桥马路桥长多少米?* 让学生仔细审题,独立思索后找出相关数量之间的相等关系说一说。师随机板书:武汉长江大
23、桥铁路桥的长度5197南京长江大桥铁路桥的长度武汉长江大桥马路桥的长度3-421南京长江大桥马路桥的长度* 问:在列方程时应当怎样表示题中的两个未知数量?(2)练习与应用第3题* 先让学生看图后说说了解到了哪些信息。* 问:这棵树苗从80厘米长到104厘米,经过了几个月?你怎么知道的?* 问:你能说说题中数量之间的相等关系吗?(学生如有困难,老师可以画线段图帮助学生理清数量关系)随机板书:小树原有的高度+6个月长的高度小树现在的高度(3)学校印制画册一共用去1740元,其中制版费300元,其余的是印刷费。每本画册的印刷费是3.6元,学校印制了多少本画册?* 学生读题后,老师先结合图书的印刷过程
24、向学生介绍“制版费”和“每册印刷费”的含义,从而帮助学生理解:印制画册用去的总钱数是由两个部分组成的。一部分是制版费,另一部分是印刷费,也就是每本印刷费与本数的乘积。* 再让学生独立解答,指名板演。* 沟通时让学生结合所列的方程说说自己的思索过程。三、总结: 通过今日的整理与练习,你又有哪些收获?还有什么怀疑?四、作业: P7“练习与应用”第2、3题。苏教版六年级数学上册教案6一、长方体与正方体第一课时长方体和正方体的相识教学内容:长方体和正方体的相识教学目标:1、使学生通过视察实物、动手操作等活动相识长方体、正方体,知道长方体和正方体的面、棱、顶点以及长、宽、高(或棱长)的含义,驾驭长方体和
25、正方体的基本特征。2、使学生在活动中通过建立图形的表象的过程,进一步积累空间与图形的学习阅历,增加空间观念。教学资源:老师打算多媒体课件、一个稍大的纸盒及一个有相对的两个面是正方体的纸盒、学生每人打算一个长方体小纸盒、每个小小组打算一个正方体教学过程:一、引入新课1、由平面图形引到立体图形。出示一张长方形的纸,让学生说出它的形态,然后把很多这样的纸摞在一起,问学生还是长方形吗?接着电脑演示由面到体的过程,揭示课题:“长方体的相识”。2、引导学生相识什么是立体图形。让学生用手摸长方体的纸盒的面,使学生感觉它很平,再用两只手握一握长方体的纸盒。问:有什么感觉?为什么会有这种感觉呢?指出它占有肯定的
26、空间,像这样占有肯定空间的物体的形态就是立体图形(电脑显示若干立体实物)。问:这些物体的形态都是什么图形呢?在这里面哪些物体的形态是长方体的呢?3、举例。让学生举出日常生活中见过的长方体的物体实例。师:要知道这些物体为什么都是长方体,就要探讨长方体的特征。二、引导探究1、出示例1:(1)拿一个长方体的纸盒来视察:长方体有几个面?从不同的角度视察一个长方体,最多能同时看到几个面?指导学生从不同的角度视察学具,回答上面的问题。(2)抽象图形。说明:因为我们最多只能看到长方体的3个面,所以通常这样画长方体。(师边讲边画长方体的直观图,留意要规范。)问:实物中长方体的每一个面是什么形?作图时,依据作图
27、的原理除了前面和后面之外,其他各个面都画成了什么形?但实际是什么形?让学生上去指一指,图上哪3个面是我们能干脆看到的?另外3个面在哪里?2、相识长方体各部分的名称。(1)老师结合直观图逐一向学生介绍棱和顶点,并刚好在图中作出标注。(2)同桌学生用手摸长方体纸盒,相互指出长方体的面、棱、顶点。电脑分别显示面、棱、顶点这三个部分,加深印象。3、长方体的特征。出示:长方体有几条棱和几个顶点?它的面和棱各有什么特征?看一看,量一量,比一比,并在小组里沟通。学生四人一组探讨长方体有什么特点,探讨后自由发表自己的看法,老师引导学生总结长方体特点。(1)面的特点长方体有几个面?谁能快速的数出长方体的6个面?
28、比较哪一种方法好?长方体的6个面是什么形态的?还有不同看法吗?这两个面的位置是怎样的?(可结合拍手理解“相对”)(还可以出示预先打算好的纸盒让学生直观感受长方体的一种特别状况,一般来说,长方体的每个面是长方形,特别状况也可能有两个相对的面是正方形。)相对的面形态相同,大小一样,可以用这四个字(出示:完全相同)来代替。(电脑演示相对的面完全相同这个特点)(2)棱的特点长方体有多少条棱呢?谁能给大家介绍一种很快的数出这12条棱的方法?假如有学生是分组来数的,可以结合长方体铁丝框架数一数。想一想:每组有几条棱?每组4条棱的位置是怎样的?相对的棱有什么特点?(长度相等)(电脑显示棱的特点)(3)顶点的
29、个数长方体有几个顶点?你是怎样快速数出来的?(4)概括长方体的特征*让学生看着自己的长方体纸盒说说长方体的面、棱、顶点各有什么特征。*小结:长方体是由6个长方形围成的立体图形。它有12条棱,8个顶点。一个长方体的面可以分为3对,相对的面完全相同;长方体的棱可以分为3组,每组4条,相对的棱长度相等。4、学习长、宽、高(1)问:相交于同一顶点的3条棱的长度都相等吗?指出:长方体相交于同一个顶点的这三条棱的长度,分别叫做长方体的长、宽、高。通常把水平方向的两条棱分别叫做长和宽,把竖直方向的一条棱叫做高。(师边讲边标注)(2)学生选择一个长方体实物,量出它的长、宽、高。5、相识正方体的特征(1)师:学
30、习了长方体的特征,你们想不想自己来探究正方体的特征?你们打算从哪几个方面进行探讨?想用哪些方法来探讨?(2)学生沟通后,让他们小小组去探究。(3)全班沟通。6、探讨长方体和正方体的关系(1)视察比较:长方体和正方体有哪些相同点?有哪些不同点?明确:正方体是一种特别的长方体。由于正方体的12条棱长度都相等,所以它的棱的长度不分长、宽、高了,就叫做棱长。(2)选择一个正方体实物,量出它的棱长。7、小结:今日我们一起来探讨了长方体和正方体的特征,请同学们打开课本看第1011页的内容。三、巩固练习1、练习一第1题。看图说出每个长方体的长、宽、高各是多少。结合第3个图形再说说这个长方体的面的形态有什么特
31、殊之处。2、练习一第2题。让学生说一说。3、练习一第3题。让学生细致视察后回答各问题,并说说怎么看出来的。明确:这个长方体前后的两个面是正方形,其余的4个面是完全相同的长方形。4、练习一第4题。先让学生推断摆出的这几个几何体分别是长方体还是正方体,再让学生相互指一指每个几何体中长、宽、高(或棱长)的位置,说说它们分别是多少厘米。5、练习一第5题学生独立完成后沟通。四、总结通过这节课的学习,你有什么收获?师:这儿有一个关于长方体特征的顺口溜。大家可以轻声读读。出示:长方体立体形,8顶6面十二棱;棱分长、宽、高,每组四条要记好;6个面对着放,对应面都一样。五、课外延长在家里找一个自己喜爱的长方体玩
32、具或物体,细致视察一下它的面、棱、顶点;或是找一些材料自己做一个长方体并涂上或画上喜爱的图案。教学后记:其次课时长方体与正方体的绽开图教学内容:P3例3、“试一试”“练一练”、练习一第67题教学目标:1、使学生通过视察实物、动手操作等活动相识长方体、正方体的绽开图,进一步加深对长方体和正方体特征的相识。2、使学生在活动中通过建立图形的表象的过程,进一步积累空间与图形的学习阅历,增加空间观念。教学资源:学生每人打算正方体、长方体纸盒各一个、剪刀学生按小小组分别打算教科书14页思索题中所需的若干张硬纸(每种6张)教学过程:一、复习导入1、说说长方体和正方体的特征。2、师:这节课,我们要接着探讨有关
33、长方体和正方体的学问。二、自主探究1、让学生看教科书3页,像例3那样,将有关的棱用红线描出,并根据例题所示的步骤进行操作,得到正方体的绽开图。2、把绽开图再复原成立体图,再进一步绽开、复原,让学生从绽开图中找到3组相对的面。3、让学生独立一剪,并在小组里沟通自己得到的绽开图,在沟通中相识不同的正方体绽开图,并思索绽开图中的各个面与原来各个面的关系。4、学生独立完成“试一试”。拿一个长方体纸盒,沿着一些棱剪开,看看它的绽开图,先从自己的绽开图中找出长方体的3组相对的面,然后在其他同学的不同的绽开图中找。最终让学生视察相对的面在不同的绽开图上的分布状况,发觉其中的规律。4、“练一练”第1题让学生在
34、视察绽开图的基础上,先在图中标注下面、后面、和左面,并说明自己的理由。然后将绽开图复原成立体图来检验。第2题(1)出示各绽开图,引导学生先想像把绽开图复原成立体图的过程,再推断。(2)把教科书117页的图形剪下来试着折一折从而验证自己从前的推断是否正确。三、巩固练习1、练习一第6题让学生在细致视察绽开图的基础上作出推断。对于不能围成长方体的图形要说明理由,最终再进行操作验证。2、先让学生独立思索并进行选择,再通过沟通让学生说明选择的依据。四、思索题让学生拿出打算好的硬纸,先启发学生思索:要围成一个长方体或正方体,至少要用几张硬纸片?这几张硬纸片的形态和大小有什么关系?再让学生操作。然后说说有没
35、有找到什么规律。五、总结通过学习,你有什么收获?想提示大家留意什么?苏教版六年级数学上册教案7实践要求:1、经验有目的、有设计、有步骤、有合作的实践活动。2、结合实际情境,体验发觉和提出问题、分析和解决问题的过程。3、在给定目标下,感受针对详细问题提出设计思路、制定简洁的方案解决问题的过程。4、通过应用和反思,进一步理解所用的学问和方法,了解所学学问之间的联系,获得数学活动阅历。教学内容:冀教版小学数学六年级上册6970页。教学目标:1、学问技能:学会理财,能对自己设计的理财方案作出合理的说明。2、数学思索:如何对自己设计的理财方案作出合理的说明。3、问题解决:可以通过比较、思索、沟通的方法,
36、经验计算对自己的理财方案作出说明。4、情感看法:感受理财的重要性,经验运用所学的学问学习理财,培育科学、合理的理财观念。教学重点:学会理财,会对自己设计的理财方案作出合理的说明。教学难点:对自己设计的理财方案作出合理的说明。教学流程:一、导入老师最近看了一套贝贝熊系列丛书,是关于培育孩子理财实力方面的书籍,读了以后觉得受益匪浅,在动物界,贝贝熊通过学习能做到对自己的财宝有安排、合理支配,我想我们通过这一单元前面的学习,也能够对我们的财宝进行支配,你们同意吗?那好,希望通过这节课,我们也能合理支配自己的财宝,即驾驭学会理财的实力。设计意图:通过和学生谈话,轻松引入本节课的课题二、任务一设计方案,
37、解决问题聪聪的爸爸是一个工程师,他设计的一个工程中标后,老板嘉奖他8000元的奖金。再过6年聪聪就要上高校了,爸爸确定把这笔钱存入银行,留给聪聪上高校用。(存款方式为整存整取)(1)小组合作,做出3个存钱方案。(提示:小组先协商好方案,然后写到学案上)(2)并算每种方案可获得的利息。(依据小组制定的三种存钱方案,组长做好合理分工,计算利息,为了便于计算,我们计算利息的时候,只考虑本金)(3)议一议:你认为那种存钱方案?为什么?设计意图:学生通过前面的学习,已经具备了计算利息的实力,学生能够依据聪聪家的状况,制定不同的存钱方案,进而计算每种方案的利息,从而获得一种胜利的喜悦感三、小组汇报、展示在
38、学生计算的过程中,老师巡察,发觉学生有代表性的方案进行展示,重点放在说明哪种方案,即学生能对自己制定的方案进行合理的说明四、任务二聪聪一家三口,妈妈每月的工资是2160元,爸爸每月的工资是4180元,爸爸的工资中还要缴纳30多元的个人所得税。过6年聪聪要上高校,请你帮聪聪家做一个零存整取的安排。零存整取:零存整取是银行定期储蓄的一种基本类型,是指储户在进行银行存款时约定存期、每月固定存款、到期一次支取本息的一种储蓄方式。零存整取一般每月5元起存,每月存入一次,中途如有漏存,应在次月补齐,只有一次补交机会。存期一般分一年、三年和五年。(1)计算聪聪家每个月的结余。(2)依据聪聪家的实际状况,制定
39、合理的存钱安排,并说明理由。(3)根据你的存钱安排,算一下,到期能取回多少钱?学问链接:零存整取利息计算公式是:利息=月存金额累计月积数月利率。其中累计月积数=(存入次数+1)2存入次数。据此推算一年期的累计月积数为(12+1)212=78,以此类推,三年期、五年期的累计月积数分别为666和1830。五、共享收获设计意图:希望学生通过这节课,感受在给定目标下,针对详细问题提出设计思路、制定简洁的方案解决问题的过程。六、课下作业为自己的零花钱制定一个零存整取的存钱安排。设计意图:作为本节课学问的持续,让学生养成一个合理消费的习惯,做一个生活上有安排的人,合理支配自己的财宝板书设计:收入:2160
40、+4180=6340(元)支出:2500+800+200+160+30=3690(元)结余:63403690=2650(元)苏教版六年级数学上册教案8教学目标1理解一个数乘以分数的意义,明白分数乘以分数的算理,驾驭计算法则。2能正确地进行分数乘以分数的计算。3通过学生全面参加教学过程,培育学生迁移、视察、分析、概括的实力。教学重点理解意义,驾驭法则。教学难点推导计算法则。教学过程(一)复习2口算下面各题,并说出算式的意义。(二)导入新课通过分数乘以整数意义的学习,使我们看到学问之间是有联系的,而且新学问都是在旧学问基础上发展的。今日我们接着探讨一个数乘以分数的意义和计算方法。(板书课题)(三)
41、讲授新课1老师逐次出示投影片,引导学生仔细视察,正确列出算式,说出算式的意义。投影:的3倍是多少。)(板书)投影:一半。)其中的一份。)师:结合题说一说,把谁平均分成2份,取其中1份?(把一瓶桔汁平均分成2份,取1份。)少。)(板书)投影:先视察图,然后列式,结合图说出算式意义。(小组探讨)汇报探讨结果,并板书。(3)不出示投影图,你自己还想知道多少瓶的重量呀?分别列式,说意义。列式?算式的意义是什么?(5)视察概括:视察(2)、(3)、(4)几题的列式,乘数是什么数?(分数)(板书)被乘数是什么数?(分数、小数、整数)我们统一叫做一个数。(板书:一个数)论)汇报探讨结果,并板书:一个数乘以分
42、数的意义就是求这个数的几分之几是多少?(6)练习:说说算式意义。2推导法则。我们已经学习了一个数乘以分数的意义,那么一个数乘以分数应当怎样计算呢?耕地多少公顷?(把一公顷平均分成2份,取其中一份,是1小时耕的。)拿动身的纸,说明:这张纸表示1公顷,你能折出一小时耕的公顷数吗?并用红斜线表示出来。(把结果贴在黑板上)再贴出一张折叠后的结果。这1份占1公顷的几分之几?怎样理解?(把1公顷平均分成(25)份,取其中1份,边说边用虚线延长5等分的线。)论,后订正,板书)分数有什么关系?(原式两分数的分母相乘。)并计算出结果。汇报、订正并板书。贴出在折纸上表示的结果。视察:原式和结果分子、分母有什么关系
43、?概括分数乘以分数的计算法则。(探讨、订正)(分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。)练一练投影订正三种做法:比较哪种方法对?哪种方法好?留意:先约分再乘。(板书)(四)巩固练习(做本上或投影片上)1计算例2中算式的结果。投影反馈时,强调先约分。3第7页,第1题,看图填空。(做书上)4先说过程,再说结果:5第7页,第4题,列式计算。6推断:(五)课堂总结这节课我们学了哪些学问?意义是什么?法则是什么?应留意什么?课堂教学设计说明这节课是本单元的教学重点,因此,在教学设计上切忌结论式的教学,充分利用这节课的内容,发散学生的思维,提高学生各种实力。教案设计重视学生全面参加教学过程,如在老