2022年第九章-四边形-知识树+知识点+典型例题+巩固练习 2.pdf

上传人:Q****o 文档编号:26584079 上传时间:2022-07-18 格式:PDF 页数:18 大小:899.70KB
返回 下载 相关 举报
2022年第九章-四边形-知识树+知识点+典型例题+巩固练习 2.pdf_第1页
第1页 / 共18页
2022年第九章-四边形-知识树+知识点+典型例题+巩固练习 2.pdf_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2022年第九章-四边形-知识树+知识点+典型例题+巩固练习 2.pdf》由会员分享,可在线阅读,更多相关《2022年第九章-四边形-知识树+知识点+典型例题+巩固练习 2.pdf(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、名师总结优秀知识点第九章四边形四垂等圆圆圆圆外心:是三边垂直平性质内外内外内相nn面积圆四边形圆四边形边形 与圆梯形平行四边形性质性质菱形平平作延利用对角相等邻角互补对角线个线相邻对组邻对形状:取决于原四边形对等腰直角辅助线移两腰移对角线高线长两腰腰中点割补成 -全等三角形、平行四边形性质判定边角对角线对边平行且相等互相平分性质判定判定判定矩形一直角对角等一组边相等对角线垂直正方形角线垂直一边相等一个直角角线相等中任意满足两个条件中点四边形三角形中位线角线的相等 或 垂直基本性质有关位置正多边形弧长 .扇形径定理对等定理周角定理点与圆直线与圆圆与圆轴对称性旋转不变性内上外分线的交点. 到三顶点

2、的距离相等锐 形内;直 斜边上;钝形外相交相切相离切线的.判定切线长定理心 : 是 三 角平 分线 的交 点. 到三边的距离相等在三角形内离含切切交等分圆周正多边形弧等弦等圆心角等有关计算:中心 .中心角. 半径 .边心距lrrs213602或扇形180rl弧长圆锥的侧面积、全一、基础知识点(一) 、四边形的相关概念1、四边形在同一平面内,由不在同一直线上的四条线段首尾顺次相接的图形叫做四边形。2、凸四边形把四边形的任一边向两方延长,如果其他个边都在延长所得直线的同一旁,这样的四边形叫做凸四边形。3、对角线在四边形中,连接不相邻两个顶点的线段叫做四边形的对角线。4、四边形的不稳定性三角形的三边

3、如果确定后,它的形状、大小就确定了,这是三角形的稳定性。但是四边形的四边确定后,它的形状不能确定,这就是四边形所具有的不稳定性,它在生产、 生活方面有着广泛的应用。5、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360。四边形的外角和定理:四边形的外角和等于360。推论:多边形的内角和定理:n 边形的内角和等于)2(n180;多边形的外角和定理:任意多边形的外角和等于360。6、多边形的对角线条数的计算公式精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 18 页名师总结优秀知识点设多边形的边数为n,则多边形的对角

4、线条数为2)3(nn。(二)、平行四边形1、平行四边形的概念两组对边分别平行的四边形叫做平行四边形。平行四边形用符号“ABCD ”表示, 如平行四边形ABCD 记作“ABCD ” ,读作“平行四边形 ABCD ” 。2、平行四边形的性质(1)平行四边形的邻角互补,对角相等。(2)平行四边形的对边平行且相等。推论:夹在两条平行线间的平行线段相等。(3)平行四边形的对角线互相平分。(4)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积。3、平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形(2)定理 1:两

5、组对角分别相等的四边形是平行四边形(3)定理 2:两组对边分别相等的四边形是平行四边形(4)定理 3:对角线互相平分的四边形是平行四边形(5)定理 4:一组对边平行且相等的四边形是平行四边形4、两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。平行线间的距离处处相等。5、平行四边形的面积S平行四边形=底边长高 =ah (三)、矩形1、矩形的概念有一个角是直角的平行四边形叫做矩形。2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(

6、2)定理 1:有三个角是直角的四边形是矩形(3)定理 2:对角线相等的平行四边形是矩形4、矩形的面积S矩形=长宽 =ab (四)、菱形1、菱形的概念有一组邻边相等的平行四边形叫做菱形2、菱形的性质精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 18 页名师总结优秀知识点(1)具有平行四边形的一切性质(2)菱形的四条边相等(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角(4)菱形是轴对称图形3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理 1:四边都相等的四边形是菱形(3)定理 2:对角线互相垂直的平行四边形是

7、菱形4、菱形的面积S菱形=底边长高 =两条对角线乘积的一半(五)、正方形1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角,四条边都相等(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形是轴对称图形,有4 条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。3、正方形的判定(1)判定一个四边形是正方形的主要依据是定义,途径有

8、两种:先证它是矩形,再证有一组邻边相等。先证它是菱形,再证有一个角是直角。(2)判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形;再证明它是菱形(或矩形);最后证明它是矩形(或菱形)4、正方形的面积设正方形边长为a,对角线长为b S正方形=222ba(六)、梯形1、梯形的相关概念一组对边平行而另一组对边不平行的四边形叫做梯形。梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。梯形中不平行的两边叫做梯形的腰。梯形的两底的距离叫做梯形的高。两腰相等的梯形叫做等腰梯形。一腰垂直于底的梯形叫做直角梯形。一般地,梯形的分类如下:一般梯形精选学习资料 - - - - - -

9、 - - - 名师归纳总结 - - - - - - -第 3 页,共 18 页名师总结优秀知识点梯形直角梯形特殊梯形等腰梯形2、梯形的判定(1)定义:一组对边平行而另一组对边不平行的四边形是梯形。(2)一组对边平行且不相等的四边形是梯形。3、等腰梯形的性质(1)等腰梯形的两腰相等,两底平行。(3)等腰梯形的对角线相等。(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。4、等腰梯形的判定(1)定义:两腰相等的梯形是等腰梯形(2)定理:在同一底上的两个角相等的梯形是等腰梯形(3)对角线相等的梯形是等腰梯形。5、梯形的面积(1)如图,DEABCDSABCD)(21梯形(2)梯形中有关

10、图形的面积:BACABDSS;BOCAODSS;BCDADCSS6、梯形中位线定理梯形中位线平行于两底,并且等于两底和的一半二、典型例题【例 1】如图,ABCD的对角线AC 、BD相交于点O,则图中全等三角形有() A 2 对 B3 对 C4 对 D 5 对【分析】由平行四边形的对边平行、对角线互相平分,可得全等三角形有:ABD和 CDE ,ADC和 CBA , AOD 和 BOC 、 AOB 和 COD 【答案】 C 【例 2】如图,O 是菱形 ABCD 的对角线AC、BD 的交点, E、F 分别是 OA、OC 的中点 下列结论: SADE=SEOD;四边形BFDE 也是菱形;四边形ABCD

11、 的面积为EFBD ; ADE= EDO; DEF 是轴对称图形其中正确的结论有()精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 18 页名师总结优秀知识点A.5 个 B.4个 C.3个 D.2个考点:菱形的判定与性质分析:正确,根据三角形的面积公式可得到结论根据已知条件利用菱形的判定定理可证得其正确正确,根据菱形的面积等于对角线乘积的一半即可求得不正确,根据已知可求得FDO= EDO ,而无法求得ADE= EDO 正确,由已知可证得DEO DFO ,从而可推出结论正确解答:解:正确E、F 分别是 OA 、OC的中点AE=OE SAD

12、E=21AE OD=21OE OD=SEOD SADE=SEOD正确四边形ABCD 是菱形, E,F 分别是 OA ,OC的中点EFOD ,OE=OF OD=OD DE=DF 同理: BE=BF 四边形BFDE是菱形正确菱形 ABCD 的面积 =21AC BD E、F 分别是 OA 、OC的中点EF=21AC菱形 ABCD 的面积 =EFBD 不正确由已知可求得FDO= EDO ,而无法求得ADE= EDO 正确EFOD ,OE=OF ,OD=OD DEO DFO DEF是轴对称图形正确的结论有四个,分别是,故选B点评:此题主要考查学生对菱形的性质等知识的理解及运用能力精选学习资料 - - -

13、 - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 18 页名师总结优秀知识点【例 3】如图,ABCD中, B、 C的平分线交于点O ,BO 和 CD 的延长线交于E ,求证: BO=OE 【分析】证线段相等,可证线段所在三角形全等可证 COE COB 已知 OC 为公共边,OCE= OCB ,又易证 E=EBC 问题得证【证明】在ABCD中, AB/CD,又(角平分线定义),又,说明:证线段相等通常有两种方法:(1)在同一三角形中证三角形等腰;(2)不在同一三角形则证两三角形全等本题也可根据等腰三角形“三线合一”性质证明结论【例 4】如图,在ABCD中, AE

14、BC于 E ,AF DC 于 F , ADC=60 , BE=2 ,CF=1 ,求 DEC 的面积【解】在中,、在 Rt ABE 中,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 18 页名师总结优秀知识点在中,故【例 5】已知:如图,D 是等腰 ABC 的底边 BC 上一点, DE/AC ,DF/AB 求证: DE+DF=AB 【分析】由于,从而可以利用平行四边形的定义和性质,等腰三角形的判定和性质来证【解】,四边形是平行四边形,说明:证明一条线段等于另外两条线段的和常采用的方法是:把三条线段中较长的线段分为两段,证明这两段分别等于

15、另两条线段精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 18 页名师总结优秀知识点【例 6】如图, 已知:中,、相交于点,于,于,求证:【分析】【解】因为四边形是平行四边形,所以,又因为、交于点,所以又因为,所以于是从而【例 7】已知:如图,AB/DC ,AC 、BD交于 O,且 AC=BD 。求证: OD=OC. 证明:过 B作交 DC延长线于E,则。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 18 页名师总结优秀知识点, 说明:本题条件中有“夹在两条平行线之间的相等且相

16、交的线段”,由于位置交错而一时用不上,为此通过作平行线,由“夹在两条平行线间的平行线段相等”将线段AC平移到BE ,得到等腰 BDE ,使问题得解【例 8】如图 6,E、F 分别是ABCD 的 AD 、BC 边上的点,且AE = CF. (1)求证: ABE CDF;(2)若 M、N 分别是 BE、DF 的中点,连结MF、EN,试判断四边形MFNE是怎样的四边形,并证明你的结论. (1)证明:四边形ABCD 是平行四边形,AB = CD , A = C. AE = CF , ABE CDF. (2)解析:四边形 MFNE 是平行四边形 . ABE CDF, AEB = CFD,BE = DF.

17、 又 M、N 分别是 BE、 DF 的中点, ME = FN. 四边形 ABCD 是平行四边形,AEB = FBE. CFD =FBE. EBDF,即 ME FN. 四边形MFNE 是平行四边形. 评注:本题是一道猜想型问题. 先猜想结论,再证明其结论. 【例 9】( 1)探究填空:如果在?ABCD 中 AM=21AB , CN=21CD ,那么四边形AMCN 是_;当 AM=31AB ,CN=31CD时,四边形AMCN 是_;1OEDCBAA D B C E F (图 6) M N 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 18

18、 页名师总结优秀知识点如果 AM=m1AB,CN=m1CD (m 1)时,四边形AMCN 是_; (2)你能得出一个一般性的结论吧?如果能请你写出一般性的结论,并证明分析:( 1)根据平行四边形的性质(平行四边形的对边平行且相等)推知AB=CD 、四边形AMCN 的对边 AM CN ;然后根据已知条件知四边形AMCN 的对边 AM=CN ;最后由平行四边形的判定定理(一组对边平行且相等的四边形是平行四边形)证得四边形AMCN 是平行四边形;(2)根据(1)的证明过程知: 在同一平面内, 一组对边平行且相等的四边形是平行四边形解答 :解:( 1)在 ?ABCD 中, ABCD ,且 AB平行于

19、CD 在四边形AMCN 中, AM CN ;又 AM=21AB ,CN21=CD ,AM=CN ,四边形AMCN 是平行四边形;在 ?ABCD 中, AB CD ,且 AB平行于 CD 在四边形AMCN 中, AM CN ;又 AM=31AB,CN=31CD ,AM=CN ,四边形AMCN 是平行四边形;在 ?ABCD 中, AB CD ,且 AB平行于 CD 在四边形AMCN 中, AM CN ;又 AM=m1AB ,CN=m1CD ,AM=CN ,四边形AMCN 是平行四边形;(2)在同一平面内,一组对边平行且相等的四边形是平行四边形证明:如图所示,AB CD且 AB=CD 连接 AC ,

20、则 BAC= DCA ,在 ABC和 CDA中,AB=CD( 已知 ) BAC= DCAAC=CA( 公共边 ) 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 18 页名师总结优秀知识点, ABC CDA ( SAS ), BCA= DAC (全等三角形的对应角相等),ADBD (内错角相等,两直线平行),四边形ABCD 是平行四边形点评: 本题考查了平行四边形的性质与判定平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法三、巩固练习(一)精心选一选1. 下列命题正确的是()一组对

21、边相等,另一组对边平行的四边形一定是平行四边形对角线相等的四边形一定是矩形两条对角线互相垂直的四边形一定是菱形两条对角线相等且互相垂直平分的四边形一定是正方形2. 已知平行四边形ABCD 的周长 32, 5AB=3BC, 则AC的取值范围为 ( ) A. 6AC10 ; B. 6AC16; C. 10AC16; D. 4AC16 3. 两个全等的三角形(不等边)可拼成不同的平形四边形的个数是()( A)1 (B)2 (C)3 (D)4 4延长平形四边形ABCD 的一边 AB到 E,使 BE BD ,连结 DE交 BC于 F,若 DAB 120,CFE 135, AB1,则 AC 的长为()(A

22、)1 (B) 1.2 (C)3 2(D)1.5 5若菱形 ABCD 中, AE 垂直平分 BC 于E,AE 1cm ,则 BD 的长是()(A)1cm (B)2cm (C)3cm (D)4cm 6. 若顺次连结一个四边形各边中点所得的图形是矩形,那么这个四边形的对角线 ( ) (A)互相垂直(B)相等(C)互相平分(D)互相垂直且相等7. 如图,等腰ABC中, D是 BC边上的一点, DE AC ,DFAB ,AB=5 那么四边形AFDE的周长是()(A)5 ( B )10 ( C)15 (D)20 8. 如图,将边长为8cm 的正方形纸片ABCD 折叠,使点 D落在 BC 边中点 E处,点A

23、落在点 F处,折痕为 MN ,则线段 CN 的长是()(A)3cm (B)4cm (C)5cm (D)6cm 9. 如图,在直角梯形ABCD中,AD BC ,B=90 , AC将梯形分成两个三角形,其中 ACD 是周长为 18 cm 的等边三角形,则该梯形的中位线的长是 ( )(A)9 cm (B)12cm (c)29cm (D)18 cm 10. 如图,在周长为20cm 的ABCD 中,AB AD , AC 、BD 相交于点 O ,OE BD 交AD 于 E,则 ABE 的周长为() (A)4cm (B)6cm (C)8cm (D)10cm ABCDOE精选学习资料 - - - - - -

24、- - - 名师归纳总结 - - - - - - -第 11 页,共 18 页名师总结优秀知识点A B C D E F O 图 8 R P D C B A E F 第 12 题图11. 如图 2,四边形ABCD为矩形纸片把纸片ABCD折叠,使点B恰好落在CD边的中点E处,折痕为AF若CD6,则AF等于()(A)34(B)33(C)24(D)12. 如图,已知四边形ABCD 中, R、 P分别是 BC 、CD 上的点, E、F分别是AP 、 RP 的中点,当点 P在CD 上从 C向 D移动而点 R不动时,那么下列结论成立的是( ) A、线段 EF 的长逐渐增大 B、线段 EF的长逐渐减小C、线段

25、 EF 的长不变 D、线段 EF的长与点 P 13. 在梯形 ABCD中, AD/BC,对角线 ACBD ,且cmAC5,BD=12c m,则梯形中位线的长等于()A. 7.5cm B. 7cm C. 6.5cm D. 6cm 14. 国家级历史文化名城金华,风光秀丽, 花木葱茏 某广场上一个形状是平行四边形的花坛 (如图),分别种有红、 黄、蓝、绿、橙、紫 6 种颜色的花 如果有ABEFDC,BCGHAD,那么下列说法中错误的是()A红花、绿花种植面积一定相等B紫花、橙花种植面积一定相等C红花、蓝花种植面积一定相等D蓝花、黄花种植面积一定相等15. 如图 , 在一个 33方格纸上 , 若以格

26、点 ( 即小正方形的顶点)为顶点画正方形,在该33方格纸上最多可画出的正方形的个数是( )个. A.13 B.14 C.18 D.20 (二)细心填一填1. 如果四边形四个内角之比1:2: 3:4,则这四边形为形。2. 若正方形的对角线长为2cm ,则正方形的面积为。3. 若矩形一个内角的平分线,把另一边分为4cm,5cm两部分,则这个矩形周长是4. 已知:平行四边形ABCD 的周长是 30cm,对角线 AC ,BD 相交于点 O, AOB 的周长比 BOC 的周长长 5cm ,则这个平行四边形的各边长为。5. 已知:平行四边形ABCD中, AEBC交 CB的延长线于点E,AF CD交 CD的

27、延长线于点F,AB BC CD DA 32cm,BC 35 AB,EAF 2C,则 BE长为,则C . 6. 在平面直角坐标系中,点A、B、C的坐标分别是A(2,5), B(3, 1) ,C(1, 1) ,在 第 一 象 限 内 找 一 点D, 使 四 边 形ABCD 是 平 行 四 边 形 , 那 么 点D 的 坐 标是7. 已知:如图 8,正方形 ABCD 中,对角线 AC和BD 相交于点 O ,E、F分别是边AB 、 BC 上的点,若 AE4cm , DF3cm,且 OE OF ,则 EF的长为。8 如图 10(1) 是一个等腰梯形,由 6 个这样的等腰梯形恰好可以拼出如图10(2) 所

28、示的一个菱形对于图10(1) 中的等腰梯形,请写出它的内角的度数或腰与底边长度之间关系的一个正确结论:9如图,在四边形ABCD中,P是对角线BD的中点,EF,分别是ABCD,的中点,A B C D E F 图2 黄蓝紫橙红绿A G E D H C F B 第 14 题精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 18 页名师总结优秀知识点ABCDEO第 10 题图D A B C P M N (1)(2)图 10 18ADBCPEF,则PFE的度数是10如图,菱形ABCD的两条对角线分别长6 和 8,点P是对角线AC上的一个动点,点M

29、 、N分别是边AB、BC的中点,则PM+PN的最小值是 _11. 如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形, 四边形ABCD还应满足的一个条件是。12. 已知矩形 ABCD ,分别为 AD 和CD 为一边向矩形外作正三角形ADE 和正三角形 CDF ,连接 BE 和BF,则BFBE的值等于。13. 如图所示, O为矩形 ABCD 的对角线交点,DF 平分 ADC 交AC 于E,BC于F, BDF=15 ,则 COF=_ 14. 如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,23ABBC,则图中

30、阴影部分的面积为15、如图,矩形1111的面积为,顺次连结各边中点得到四边形2222 B,再顺次连结四边形2222 B四边中点得到四边形3333,依此类推,求四边形nnnn的面积是。(三)认真答一答1. 如图,在四边形ABCD 中, A=60, B=D=90,BC=2,CD=3, 求 AB的长。2. 如图, 在等腰梯形ABCD 中,AD BC,AB=CD=2, BAD=120 , 对角线 AC平分 BCD ,求等腰梯形 ABCD 的周长。3. 将平行四边形纸片ABCD按如图方式折叠, 使点 C与 A重合,点 D落到 D 处,折痕为 EF(1)求证: ABE AD F;C F D B E A P

31、 (第 9 题)A D F DOFEDCBA精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 13 页,共 18 页名师总结优秀知识点(2)连接 CF,判断四边形AECF 是什么特殊四边形?证明你的结论4已知:如图,在梯形ABCD 中, AD BC ,AB=CD ,对角线AC 、BD相交于点 E,ADB=60 , BD=10 ,BE ED=4 1,求梯形 ABCD 的腰长 . 5. 如图,菱形ABCD ,E,F 分别是 BC ,CD上的点, B EAF 60,BAE 18求 CEF的度数。6. 已知: 如图,在ABC中,AB=AC,ADBC,垂足为点

32、D,AN是ABC外角CAM的平分线,CEAN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明7. 如图, 四边形 ABCD 中,一组对边AB=DC=4 ,另一组对边AD BC ,对角线 BD与边 DC互相垂直, M 、N、H分别是 AD 、BC 、BD的中点,且ABD=30 求: (1)MH的长( 2)MN的长。8. 如图所示,在ABC中, BAC=90 ,ADB,BE 平分 ABC,EF BC,那么 AE=CF吗?证明A B C D M N E (第 6 题) EDCBAFDCBAE精选学习资料 - - - - - - -

33、- - 名师归纳总结 - - - - - - -第 14 页,共 18 页名师总结优秀知识点你的结论。9. 如图, ABCD 是正方形, CE BD ,BEBD ,BE交 DC于点 F,求证: (1) BEC 30(2)DE DF 10. 如图,在正方形ABCD中, P为对角线BD上一点,PE BC ,垂足为E, PF CD ,垂足为F,求证: EFAP 11. 如图,四边形 ABCD 的对角线AC 、BD交于点 P,过点 P作直线交AD于点 E,交 BC于点 F。若 PE=PF,且 AP+AE=CP+CF (1)求证: PA=PC; (2)若 AD=12,AB=15, DAB=60 , 求四

34、边形ABCD 的面积 . 12. 如图,在矩形ABCD 中, AD=8cm ,AB=6cm ,点 A处有一动点 E以1cm s的速度由点 A向点 B运动,同时点 C处也有一动点F以2cms的速度由点 C向点 D运动,设运动的时间为x(s) ,四边形EBFD 的面积为 y(cm2) ,求 y与x的函数关系式及自变量x的取值范围。13. 如图在直角梯形ABCD 中, AD BC, B=90AD=24cm,AB=8cm,BC=26cm, 动点 P从 A开始ADCBFE精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 15 页,共 18 页名师总结优秀知识点

35、ADCB沿 AD边向 D以 1cm/s 的速度运动 , 动点 Q从 C开始沿 CB向 B以 3cm/s 的速度运动 ,P,Q分别从点A,C 同时出发 , 当其中一点到达端点时, 另一点也随之停止运动, 设运动的时间t,t分别为何值时, 四边形 PQCD 为平行四边形, 等腰梯形 ? 14. 在 ABC中,借助作图工具可以作出中位线EF,沿着中位线EF一刀剪切后, 用得到的AEF和四边形EBCF可以拼接成平行四边形EBCP ,接切线与拼图过程如图所示,依照上述方法,安要求完成下列操作设计,并画出图形说明。(1)在 ABC中,增加条件,沿着一刀剪切后可以拼成矩形。(2)在 ABC 中,增加条件,沿

36、着一刀剪切后可以拼成菱形。(3)在 ABC 中,增加条件,沿着一刀剪切后可以拼成正方形。(4)在 ABC (ABAC )中,一刀剪切后也可以拼接成等腰梯形,画出切线与拼图示意图。15 如图把一个正方形割去四分之一,将余下的部分分成3 个全等的图形(图甲) ;将余下的部分分成4 个全等的图形 (图已) 仿照示例, 请你将一个正三角形割去四分之一后余下的部分。 (1)分成 3 个全等的图形(在图一中画出示意图);(2)分成四个全等的图形(在图二中画出示意图);(3)你还能利用所得的4 个全等的图形拼成一个平行四边形吗?若能,画出大致的示意图。16. 如图是王大爷的一块四边形菜地,在A处有一口井,

37、王大爷要想从 A处引一条笔直的水渠,且这条笔直的水渠将四边形菜地分成面积相等的两部分. 请你为王大爷设计一条引水渠的方案,画出图形 , 并简要写出作图的主要步骤. 解: 作图步骤:A B Q C D P 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 16 页,共 18 页名师总结优秀知识点FEDCBA17. (1)如图 25-1,在四边形ABCD中, AB AD , B D90, E、F 分别是边BC 、 CD上的点,且 EAF=12BAD.求证 :EFBEFD; (2) 如图 25-2 在四边形ABCD中, AB AD , B+D180, E、

38、F 分别是边BC 、CD上的点,且 EAF=12 BAD, (1) 中的结论是否仍然成立?不用证明. (3) 如图 25-3 在四边形ABCD 中, AB AD,B+ADC 180, E、F 分别是边BC 、CD延长线上的点,且EAF=12BAD, (1) 中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明. 18. 将边长 OA=8 ,OC=10的矩形OABC放在平面直角坐标系中,顶点O为原点,顶点C、A分别在x轴和 y 轴上 . 在OA、OC边上选取适当的点E、F,连接 EF ,将 EOF沿 EF折叠,使点O落在AB边上的点D处图图图(1)如图,当点F 与点

39、C重合时, OE的长度为;(2)如图,当点F 与点 C不重合时,过点D作 DG y 轴交 EF于点T,交OC于点G. 求证: EO=DT ;(3)在(2)的条件下, 设()T xy,写出y与x之间的函数关系式为,自变量x的取值范围是;(4)如图,将矩形OABC变为平行四边形,放在平面直角坐标系中,且OC=10 ,OC边上的高等于 8,点 F与点 C不重合,过点D作 DG y 轴交 EF于点T,交OC于点G,求xyTGFECOBADyxEBAC(F)ODxyGTFEBACOD精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 17 页,共 18 页名师总

40、结优秀知识点出这时()T xy,的坐标y与x之间的函数关系式(不求自变量x的取值范围) 19. (1)如图 101 所示, BD, CE 分别是 ABC的外角平分线,过点A作 AF BD, AGCE,垂足分别为F,G ,连结 FG ,延长 AF, AG ,与直线 BC分别交于点M 、N,那么线段FG与 ABC的周长之间存在的数量关系是什么?即:FG (AB BC+AC )(直接写出结果即可)(2)如图 102,若 BD , CE分别是 ABC的内角平分线;其他条件不变,线段FG与ABC三边之间又有怎样的数量关系?请写出你的猜想,并给予证明(3)如图 103,若 BD为 ABC的内角平分线, C

41、E为 ABC的外角平分线, 其他条件不变,线段 FG与 ABC三边又有怎样的数量关系?直接写出你的猜想即可不需要证明。20. 已知正方形 ABCD 和等腰 Rt0,90 ,BEF EFBEBEF按图 1放置, 使点 F在BC 上, 取DF 的中点 G ,连EG 、CG. (1)探索 EG 、CG 的数量关系, 并说明理由;(2)将图 1中BEF绕B 点顺时针旋转045得图 2,连结 DF, 取DF的中点 G ,问(1)中的结论是否成立,并说明理由;(3)将图 1 中BEF绕 B点转动任意角度(旋转角在0 到090之间)得图3,连结 DF ,取DF的中点 G ,问( 1)中的结论是否成立,请说明理由;图1GFBDACE图2GFBDACE图3GFBDACEGFEDCBANMFGEDCBA精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 18 页,共 18 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 技术总结

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁