《解析几何第四版吕林根课后习题集规范标准答案第二章.doc》由会员分享,可在线阅读,更多相关《解析几何第四版吕林根课后习题集规范标准答案第二章.doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、.第二章 轨迹与方程2.1平面曲线的方程1.一动点到的距离恒等于它到点的距离一半,求此动点的轨迹方程,并指出此轨迹是什么图形? 解:动点在轨迹上的充要条件是。设的坐标有 化简得 故此动点的轨迹方程为 此轨迹为椭圆 2.有一长度为0)的线段,它的两端点分别在轴正半轴与轴的正半轴上移动,是求此线段中点的轨迹。,为两端点,为此线段的中点。 解:如图所示 设.则.在中有 .把点的坐标代入此式得: .此线段中点的轨迹为. 3. 一动点到两定点的距离的乘积等于定值,求此动点的轨迹. 解:设两定点的距离为,并取两定点的连线为轴, 两定点所连线段的中垂线为轴.现有:.设在中 . 在中. 由两式得:. 4.设是
2、等轴双曲线上任意三点,求证的重心必在同一等轴双曲线上. 证明:设等轴双曲线的参数方程为 ,.重心 5.任何一圆交等轴双曲线于四点,及.那么一定有. 证明:设圆的方程.圆与等轴双曲线交点,则代入得整理得: 可知是它的四个根,则有韦达定理. 8. 把下面的平面曲线的普通方程化为参数方程.; ; .解:令,代入方程得参数方程为.令代入方程得当时,当时,故参数方程为.2.2 曲面的方程1、 一动点移动时,与及平面等距离,求该动点的轨迹方程。解:设在给定的坐标系下,动点,所求的轨迹为,则亦即由于上述变形为同解变形,从而所求的轨迹方程为2、在空间,选取适当的坐标系,求下列点的轨迹方程:(1)到两定点距离之
3、比为常数的点的轨迹;(2)到两定点的距离之和为常数的点的轨迹;(3)到两定点的距离之差为常数的点的轨迹;(4)到一定点和一定平面距离之比等于常数的点的轨迹。解:(1)取二定点的连线为轴,二定点连接线段的中点作为坐标原点,且令两距离之比的常数为,二定点的距离为,则二定点的坐标为,设动点,所求的轨迹为,则亦即经同解变形得:上式即为所要求的动点的轨迹方程。(2)建立坐标系如(1),但设两定点的距离为,距离之和常数为。设动点,要求的轨迹为,则亦即两边平方且整理后,得: (1)从而(1)为即:由于上述过程为同解变形,所以(3)即为所求的轨迹方程。(3)建立如(2)的坐标系,设动点,所求的轨迹为,则类似于
4、(2),上式经同解变形为:其中 (*)(*)即为所求的轨迹的方程。(4)取定平面为面,并让定点在轴上,从而定点的坐标为,再令距离之比为。设动点,所求的轨迹为,则将上述方程经同解化简为: (*)(*)即为所要求的轨迹方程。3. 求下列各球面的方程:(1)中心,半径为;(2)中心在原点,且经过点;(3)一条直径的两端点是(4)通过原点与解:(1)由本节例5 知,所求的球面方程为:(2)由已知,球面半径所以类似上题,得球面方程为(3)由已知,球面的球心坐标,球的半径,所以球面方程为:(4)设所求的球面方程为:因该球面经过点,所以 (1)解(1)有所求的球面方程为2.3 母线平行于坐标轴的柱面方程1、
5、画出下列方程所表示的曲面的图形。(1) 解:各题的图形如下:(1)2.4 空间曲线的方程1、平面与的公共点组成怎样的轨迹。解:上述二图形的公共点的坐标满足从而:()当时,公共点的轨迹为: 及 即为两条平行轴的直线;()当时,公共点的轨迹为: 即为轴;()当时,公共点的轨迹为: 即过且平行于轴的直线;()当或时,两图形无公共点。2、指出下列曲面与三个坐标面的交线分别是什么曲线?(1); (2);(3); (4)解:(1)曲面与面的交线为:此曲线是圆心在原点,半径且处在面上的圆。同理可求出曲面与面及面的交线分别为:, 它们分别是中心在原点,长轴在轴上,且处在面上的椭圆,以及中心在原点,长轴在轴上,
6、且处在面上的椭圆;(2)由面与面,面,面的交线分别为:,亦即:,即为中心在原点,长轴在轴上,且处在面上的椭圆;中心在原点,实轴在轴,且处在面上的双曲线,以及中心在原点,实轴在轴,且处在面上的双曲线。(3)曲面与面,面,面的交线分别为:,亦即,即为中心在原点,实轴在轴,且处在面上的双曲线;无轨迹以及中心在原点,实轴在轴上,且处在面上的双曲线。(4)曲面与面,面,面的交线分别为:,亦即,即为坐标原点,顶点在原点以轴为对称轴,且处在面上的抛物线,以及顶点在原点,以轴为对称轴,且处在面上的抛物线。3. 求下列空间曲线对三个坐标面的射影柱面方程。(1);(2)(3)(4)解:(1)从方程组分别消去变量,得:亦即: () () ()()是原曲线对平面的射影柱面方程;()是原曲线对平面的射影柱面方程;()是原曲线对平面的射影柱面方程。(2)按照与(1)同样的方法可得原曲线()对平面的射影柱面方程;()对平面的射影柱面方程;()对平面的射影柱面方程。(3) 原曲线对平面的射影柱面方程:原曲线对平面的射影柱面方程:原曲线对平面的射影柱面方程:(4) 原曲线对平面的射影柱面方程:原曲线对平面的射影柱面方程:原曲线对平面的射影柱面方程:6. 求空间曲线的参数方程. 解: 令,代入方程得再将所得结果代入方程得 .从而知曲线的参数方程为