《2017-2018学年高中数学苏教版选修2-3教学案:第3章 章末小结 知识整合与阶段检测 .doc》由会员分享,可在线阅读,更多相关《2017-2018学年高中数学苏教版选修2-3教学案:第3章 章末小结 知识整合与阶段检测 .doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、对应学生用书P50一、独立性检验1独立性检验的思想及方法独立性检验的基本思想类似于数学中的反证法,要确认“两个分类变量有关系”这一结论成立的可信程度,首先假设该结论不成立,即假设结论“两个对象没有关系”成立,在该假设下构造的随机变量2应该很小,如果由观测数据计算得到的2的观测值很大,则在一定程度上说明假设不合理根据随机变量X的含义,可以通过概率来评价假设不合理程度2独立性检验的一般步骤(1)提出假设H0;(2)根据样本数据列22列联表,计算2;(3)比较2与临界值的大小并作出判断二、回归分析回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法建立回归模型的基本步骤:(1)确定两个变量;
2、(2)画出散点图;(3)进行相关系数检验;(4)确定线性回归方程类型,求出回归方程建立回归模型的基本步骤,不仅适用于线性回归模型,也适用于非线性回归模型的建立(时间120分钟,满分160分)一、填空题(本大题共14个小题,每小题5分,共70分,把正确答案填在题中横线上)1下列有关线性回归的说法变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系;在平面直角坐标系中用描点的方法得到具有相关关系的两个变量的一组数据的图形叫做散点图;线性回归直线得到具有代表意义的线性回归方程;任何一组观测值都能得到具有代表意义的线性回归方程其中错误的是_解析:任何一组观测值并不都能得到具有代表
3、意义的线性回归方程答案:2下表是x与y之间的一组数据,则y关于x的线性回归直线必过点_.x0123y1357解析:1.5,4,样本点的中心为(1.5,4),而回归直线必过样本点的中心,故必过(1.5,4)答案:(1.5,4)3对两个变量y和x进行线性相关性检验,已知n是观察值组数,r是相关系数,且已知:n7,r0.953 3;n15,r0.301 2;n17,r0.999 1;n3,r0.995 0,则变量y和x具有线性相关关系的是_(填序号)解析:判断变量y与x是否具有线性相关关系时,观察值组数n不能太小若y与x具有线性相关性,则相关系数|r|0.75,故错答案:4由线性回归直线方程4.75
4、x157,当x28时,为_解析:将x的值代入回归直线方程得估计值4.7528157290.答案:2905一家保险公司调查其总公司营业部的加班情况,收集了10周中每周加班工作时间y(小时)与签发保险单数目x的数据如下表所示:x8252151 0705504809201 3503256701 215y3.51.04.02.01.03.04.51.53.05.0已知用最小二乘法估计求出的线性回归方程的斜率为0.003 585,则线性回归方程为_解析:线性回归直线x过样本中心点(,),故将,求出代入即可答案:0.118 20.003 585x6某班主任对全班50名学生进行了作业量多少的调查,数据如下表
5、,则喜不喜欢玩电脑游戏与认为作业量的多少有关系的把握大约为_.认为作业多认为作业不多合计喜欢玩电脑游戏18927不喜欢玩电脑游戏81523合计262450解析:假设H0:喜欢玩电脑游戏与认为作业量的多少没有关系,根据列联表中的数据,可以求得25.06,对照临界值表,当假设成立时,25.024的概率约为0.025,所以我们有97.5%的把握认为喜欢玩电脑游戏与认为作业量的多少有关系答案:97.5%7下列关于回归分析与独立性检验的说法正确的是_(填序号)回归分析和独立性检验没有什么区别;回归分析是对两个变量准确关系的分析,而独立性检验是分析两个变量之间的不确定性关系;回归分析研究两个变量之间的相关
6、关系,独立性检验是对两个变量是否具有某种关系的一种检验;独立性检验可以100%确定两个变量之间是否具有某种关系解析:由回归分析、独立性检验的意义知,回归分析与独立性检验都是研究两个变量之间的相关性,但方法与手段有所不同,研究角度不同由其意义知,正确答案:8.如图,有5组数据对(x,y),去掉哪组数据后剩下的4组数据的线性相关程度最大_解析:由散点图可知,除D之外的其余各点近似地在某条直线附近,而D点则偏离这一直线故应去掉D.答案:D9某单位为了了解用电量y(度)与气温x()之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表,由表中数据得线性回归方程x,其中2.现预测当气温为4时,用
7、电量的度数约为_.用电量y(度)24343864气温x()1813101解析:由题意可知(1813101)10,(24343864)40,2.又回归方程2x过点(10,40),故60,所以当x4时,2(4)6068.答案:6810吃零食是中学生中普遍存在的现象,吃零食对学生身体发育有诸多不利影响,影响学生的健康成长下表给出性别与吃零食的22列联表:男女总计喜欢吃零食51217不喜欢吃零食402868合计454085试回答吃零食与性别有关系吗?(“有”或“没有”)_解析:24.7223.841.故约有95%的把握认为“吃零食与性别”有关答案:有11变量x,y具有线性相关关系,当x的取值分别为8,
8、12,14和16时,通过观测知y的值分别为5,8,9和11,若在实际问题中,y的预报值最大是10,则x的最大取值不能超过_解析:因为x16时,y11;当x14时,y9,所以当y的最大值为10时,x的最大值属于区间(14,16)答案:1512下表是某厂14月份用水量(单位:百吨)的一组数据,月份x1234用水量y4.5432.5由某散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归方程是0.7x,则该厂6月份的用水量约为_解析:2.5,3.5,0.7,3.50.72.55.25.当x6时,0.765.251.05.答案:1.05百吨13为研究变量x和y的线性相关关系,甲、乙两人分别
9、作了研究,利用线性回归方程得到回归直线l1和l2,两人计算知相同,也相同,则l1与l2的位置关系是_解析:每条回归直线都过样本的中心(,)答案:l1与l2有公共点(,)14变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1)r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则_(填序号)r2r10;0r2r1;r20r1;r2r1.解析:对于变量Y与X而言,Y随X的增大而增大,故Y与X正相关,即r10;对
10、于变量V与U而言,V随U的增大而减小,故V与U负相关,即r20,所以有r207.879,所以有99.5%的把握说:员工“工作积极”与“积极支持企业改革”是有关的,可以认为企业的全体员工对待企业改革的态度与其工作积极性是有关的18(本小题满分16分)某数学老师身高176 cm,他爷爷、父亲和儿子的身高分别是173 cm、170 cm和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高约为多少?解:由题意父亲身高x cm与儿子身高y cm对应关系如下表:x173170176y170176182则173,176, (xi)(yi)(173173)(170176)(
11、170173)(176176)(176173)(182176)18, (xi)2(173173)2(170173)2(176173)218.所以1.所以1761733.所以线性回归方程xx3.所以可估计孙子身高为1823185(cm)19(本小题满分16分)某中学对高二甲、乙两个同类班级进行“加强语文阅读理解训练对提高数学应用题得分率作用”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:60分以下6170分7180分8190
12、分91100分甲班(人数)36111812乙班(人数)48131510现规定平均成绩在80分以上(不含80分)的为优秀(1)试分别估计两个班级的优秀率;(2)由以上统计数据填写下面22列联表,并问是否有75%的把握认为“加强语文阅读理解训练对提高数学应用题得分率”有帮助.优秀人数非优秀人数合计甲班乙班合计解:(1)由题意知,甲、乙两班均有学生50人,甲班优秀人数为30人,优秀率为60%,乙班优秀人数为25人,优秀率为50%,所以甲、乙两班的优秀率分别为60%和50%.(2)列联表如下:优秀人数非优秀人数合计甲班302050乙班252550合计5545100因为21.010,所以由参考数据知,没
13、有75%的把握认为“加强语文阅读理解训练对提高数学应用题得分率”有帮助20(本小题满分16分)某运动员训练次数与运动成绩之间数据关系如下:次数(x)3033353739444650成绩(y)3034373942464851(1)作出散点图;(2)求出回归方程;(3)计算相关系数,并利用其检验两变量的相关关系的显著性;(4)试预测该运动员训练47次和55次的成绩解:(1)作出该运动员训练次数(x)与成绩(y)之间的散点图,如图所示,由散点图可知,它们之间具有线性相关关系(2)计算得39.25,40.875,1.0415,0.004,所求回归方程为1.0415 x0.004.(3)计算得x12 656,y13 731,r0.993,查表得r0.050.707,rr0.05,由此可得出,训练次数与运动成绩有较强的线性相关关系(4)由上述分析可知,我们可用回归方程y1.041 5x0.004作为该运动员成绩的预报值将x47和x55分别代入该方程可得y49和y57.故预测该运动员训练47次和55次的成绩分别为49和57.