2018版高中数学人教B版必修二学案:第一单元 1.2.3 第2课时 平面与平面垂直 .docx

上传人:荣*** 文档编号:2625874 上传时间:2020-04-25 格式:DOCX 页数:10 大小:519.98KB
返回 下载 相关 举报
2018版高中数学人教B版必修二学案:第一单元 1.2.3 第2课时 平面与平面垂直 .docx_第1页
第1页 / 共10页
2018版高中数学人教B版必修二学案:第一单元 1.2.3 第2课时 平面与平面垂直 .docx_第2页
第2页 / 共10页
点击查看更多>>
资源描述

《2018版高中数学人教B版必修二学案:第一单元 1.2.3 第2课时 平面与平面垂直 .docx》由会员分享,可在线阅读,更多相关《2018版高中数学人教B版必修二学案:第一单元 1.2.3 第2课时 平面与平面垂直 .docx(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第2课时平面与平面垂直学习目标1.理解面面垂直的定义,并能画出面面垂直的图形.2.掌握面面垂直的判定定理及性质定理,并能进行空间垂直的相互转化.3.掌握面面垂直的证明方法,并能在几何体中应用知识点一平面与平面垂直的定义1条件:如果两个相交平面的交线与第三个平面垂直,又这两个平面与第三个平面相交所得的两条交线互相垂直2结论:两个平面互相垂直3记法:平面,互相垂直,记作.知识点二平面与平面垂直的判定定理思考建筑工人常在一根细线上拴一个重物,做成“铅锤”,用这种方法来检查墙与地面是否垂直当挂铅锤的线从上面某一点垂下时,如果墙壁贴近铅锤线,则说明墙和地面什么关系?此时铅锤线与地面什么关系?梳理平面与平

2、面垂直的判定定理文字语言如果一个平面过另一个平面的_,则这两个平面互相垂直图形语言符号语言a,_知识点三平面与平面垂直的性质定理思考黑板所在平面与地面所在平面垂直,你能否在黑板上画一条直线与地面垂直?梳理文字语言图形语言符号语言如果两个平面互相垂直,那么在一个平面内_垂直于另一个平面,CD,BA,BACD,B为垂足BA类型一面面垂直的判定例1如图,四棱锥PABCD的底面是正方形,PD底面ABCD,点E在棱PB上,求证:平面AEC平面PDB.反思与感悟应用判定定理证明平面与平面垂直的基本步骤跟踪训练1如图,三棱柱ABCA1B1C1中,侧棱垂直底面,ACB90,ACAA1,D是棱AA1的中点证明:

3、平面BDC1平面BDC.类型二面面垂直的性质定理及应用例2如图,在三棱锥PABC中,PA平面ABC,平面PAB平面PBC.求证:BCAB.反思与感悟证明线面垂直,一种方法是利用线面垂直的判定定理,另一种方法是利用面面垂直的性质定理本题已知面面垂直,故可考虑面面垂直的性质定理利用面面垂直的性质定理证明线面垂直的问题时,要注意以下三点:(1)两个平面垂直(2)直线必须在其中一个平面内(3)直线必须垂直于它们的交线跟踪训练2如图所示,P是四边形ABCD所在平面外的一点,ABCD是DAB60且边长为a的菱形侧面PAD为正三角形,其所在平面垂直于底面ABCD,G为AD边的中点求证:(1)BG平面PAD;

4、(2)ADPB.类型三垂直关系的综合应用例3如图所示,ABC为正三角形,CE平面ABC,BDCE,且CEAC2BD,M,N分别是AE,AC的中点,求证:(1)DEDA;(2)平面BDMN平面ECA;(3)平面DEA平面ECA.反思与感悟在关于垂直问题的论证中要注意线线垂直、线面垂直、面面垂直的相互转化每一种垂直的判定都是从某一垂直开始转向另一垂直,最终达到目的,其转化关系如下:跟踪训练3如图,在四棱锥PABCD中,ABCD,ABAD,CD2AB,平面PAD底面ABCD,PAAD.E和F分别是CD和PC的中点,求证:(1)PA底面ABCD;(2)BE平面PAD;(3)平面BEF平面PCD.1下列

5、四个命题垂直于同一条直线的两条直线相互平行;垂直于同一个平面的两条直线相互平行;垂直于同一条直线的两个平面相互平行;垂直于同一个平面的两个平面相互平行其中错误的命题有()A1个 B2个C3个 D4个2.如图,设P是正方形ABCD外一点,且PA平面ABCD,则平面PAB与平面PBC、平面PAD的位置关系是()A平面PAB与平面PBC、平面PAD都垂直B它们两两垂直C平面PAB与平面PBC垂直,与平面PAD不垂直D平面PAB与平面PBC、平面PAD都不垂直3如图,在四面体ABCD中,已知ABAC,BDAC,那么D在面ABC内的正投影H必在()A直线AB上 B直线BC上C直线AC上 DABC内部4如

6、图所示,已知AF平面ABCD,DE平面ABCD,且AFDE,AD6,则EF_.5.如图所示,在四棱锥SABCD中,底面四边形ABCD是平行四边形,SC平面ABCD,E为SA的中点求证:平面EBD平面ABCD.1面面垂直的性质定理揭示了“面面垂直、线面垂直及线线垂直”间的内在联系,体现了数学中的化归转化思想,其转化关系如下:2运用平面垂直的性质定理时,一般需要作铺助线,基本作法是过其中一个平面内一点作交线的垂线,这样把面面垂直转化为线面垂直或线线垂直答案精析问题导学知识点二思考都是垂直梳理垂线a知识点三思考容易发现墙壁与墙壁所在平面的交线与地面垂直,因此只要在黑板上画出一条与这条交线平行的直线,

7、则所画直线必与地面垂直梳理垂直于它们交线的直线题型探究例1证明设ACBDO,连接OE,ACBD,ACPD,PD,BD为平面PDB内两条相交直线,AC平面PDB.又AC平面AEC,平面AEC平面PDB.跟踪训练1证明由题设知BCCC1,BCAC,CC1ACC,所以BC平面ACC1A1.又DC1平面ACC1A1,所以DC1BC.由题设知A1DC1ADC45,所以CDC190,即DC1DC.又DCBCC,所以DC1平面BDC.又DC1平面BDC1,所以平面BDC1平面BDC.例2证明如图,在平面PAB内,作ADPB于D.平面PAB平面PBC,且平面PAB平面PBCPB.AD平面PBC.又BC平面PB

8、C,ADBC.又PA平面ABC,BC平面ABC,PABC,又PAADA,BC平面PAB.又AB平面PAB,BCAB.跟踪训练2证明(1)平面PAD平面ABCD,平面PAD平面ABCDAD,又四边形ABCD是菱形且DAB60,ABD是正三角形,BGAD.BG平面PAD.(2)由(1)可知BGAD,PGAD.又BGPGG,AD平面PBG,又PB平面PBG,ADPB.例3解(1)取CE的中点F,连接DF,易知DFBC,因为CE平面ABC,所以CEBC,所以CEDF.因为BDCE,所以BD平面ABC,所以BDAB.在RtEFD和RtDBA中,因为EFCEDB,DFBCAB,所以RtEFDRtDBA,所

9、以DEDA.(2)因为EC平面ABC,所以ECBN,因为ABC为正三角形,所以BNAC.因为ECACC,所以BN平面ECA.又因为BN平面BDMN,所以平面BDMN平面ECA.(3)因为M,N分别是AE,AC的中点,所以MN綊CF綊BD,所以四边形MNBD是平行四边形,所以DMBN,由(2)知BN平面ECA,所以DM平面ECA.又因为DM平面DEA,所以平面DEA平面ECA.跟踪训练3证明(1)PAAD,平面PAD平面ABCD,平面PAD平面ABCDAD,由平面和平面垂直的性质定理可得PA平面ABCD.(2)ABCD,ABAD,CD2AB,E和F分别是CD和PC的中点,故四边形ABED为平行四

10、边形,故有BEAD.又AD平面PAD,BE平面PAD,BE平面PAD.(3)在平行四边形ABED中,由ABAD可得,ABED为矩形,故有BECD.由PA平面ABCD,可得PAAB,再由ABAD可得AB平面PAD,CD平面PAD,故有CDPD.再由E、F分别为CD和PC的中点,可得EFPD,CDEF.而EF和BE是平面BEF内的两条相交直线,故有CD平面BEF.由于CD平面PCD,平面BEF平面PCD.当堂训练1B2.A3.A46解析AF平面ABCD,DE平面ABCD,AFDE.又AFDE,四边形AFED为平行四边形,故EFAD6.5证明连接AC与BD交于O点,连接OE.O为AC的中点,E为SA的中点,EOSC.SC平面ABCD,EO平面ABCD.又EO平面EBD,平面EBD平面ABCD.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁