《2019高三数学理北师大版一轮教师用书:第7章 第1节 简单几何体的结构及其三视图和直观图 .doc》由会员分享,可在线阅读,更多相关《2019高三数学理北师大版一轮教师用书:第7章 第1节 简单几何体的结构及其三视图和直观图 .doc(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第章立体几何第一节简单几何体的结构及其三视图和直观图考纲传真(教师用书独具)1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式(对应学生用书第106页)基础知识填充1简单几何体的结构特征(1)多面体棱柱:两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,这些面围成的几何体叫作棱柱棱锥:有一个面是多边形,其余
2、各面是一个公共顶点的三角形,这些面围成的几何体叫作棱锥棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫作棱台(2)旋转体圆锥可以由直角三角形绕其任一直角边旋转得到圆台可以由直角梯形绕直角腰或等腰梯形绕上下底中点连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到球可以由半圆或圆绕直径旋转得到的. 2三视图(1)三视图的名称几何体的三视图包括主视图、左视图、俯视图(2)三视图的画法画三视图时,重叠的线只画一条,挡住的线要画成虚线三视图的主视图、左视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体得到的正投影图观察简单组合体是由哪几个简单几何体组成的,并注意它们的组成方式,
3、特别是它们的交线位置3直观图简单几何体的直观图常用斜二测画法来画,其规则是:(1)在已知图形中建立直角坐标系,xOy.画直观图时,它们分别对应x轴和y轴,两轴交于点O,使xOy45,它们确定的平面表示水平平面;(2)已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x轴和y轴的线段;(3)已知图形中平行于x轴的线段,在直观图中保持原长度不变;平行于y轴的线段,长度为原来的.基本能力自测1(思考辨析)判断下列结论的正误(正确的打“”,错误的打“”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱()(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥()(3)菱形的直观图仍是
4、菱形()(4)正方体、球、圆锥各自的三视图中,三视图均相同()答案(1)(2)(3)(4)2某简单几何体的主视图是三角形,则该几何体不可能是()A圆柱B圆锥C四面体D三棱柱A由三视图知识知圆锥、四面体、三棱柱(放倒看)都能使其主视图为三角形,而圆柱的主视图不可能为三角形3(教材改编)如图711,长方体ABCDABCD中被截去一部分,其中EHAD,则剩下的几何体是()图711A棱台B四棱柱C五棱柱D简单组合体C由几何体的结构特征,剩下的几何体为五棱柱4(2017北京高考)某四棱锥的三视图如图712所示,则该四棱锥的最长棱的长度为()图712A3B2 C2 D2B在正方体中还原该四棱锥,如图所示,
5、可知SD为该四棱锥的最长棱由三视图可知正方体的棱长为2,故SD2.故选B.5以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于_2由题意得圆柱的底面半径r1,母线l1,所以圆柱的侧面积S2rl2.(对应学生用书第107页)简单几何体的结构特征(1)以下命题:以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥;以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;圆柱、圆锥、圆台的底面都是圆面;一个平面截圆锥,得到一个圆锥和一个圆台其中正确命题的个数为()A0 B1C2D3(2)给出下列四个命题:有两个侧面是矩形的立体图形是直棱柱;侧面都是等腰三角形的棱锥是
6、正棱锥;侧面都是矩形的直四棱柱是长方体;底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱其中不正确的命题为_. 【导学号:79140219】(1)B(2)(1)由圆锥、圆台、圆柱的定义可知错误,正确对于命题,只有平行于圆锥底面的平面截圆锥,才能得到一个圆锥和一个圆台,不正确(2)对于,平行六面体的两个相对侧面也可能是矩形,故错;对于,对等腰三角形的腰是否为侧棱未作说明(如图),故错;对于,若底面不是矩形,则错;由线面垂直的判定,可知侧棱垂直于底面,故正确综上,命题不正确规律方法简单几何体概念辨析题的常用方法(1)定义法:紧扣定义,由已知构建几何模型,在条件不变的情况下,变换模型中的线面
7、关系或增加线、面等基本元素,根据定义进行判定.(2)反例法:通过反例对结构特征进行辨析,即要说明一个结论是错误的,只是举出一个反例即可.跟踪训练给出下列命题:棱柱的侧棱都相等,侧面都是全等的平行四边形;在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;存在每个面都是直角三角形的四面体;棱台的侧棱延长后交于一点其中正确命题的序号是_不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;正确,如图,正方体ABCDA1B1C1D1中的三棱锥C1ABC,四个面都是直角三角形;正确,由棱台的概念可知简单几何体
8、的三视图角度1由简单几何体的直观图判断三视图(2017东北四市联考)如图713,在正方体ABCDA1B1C1D1中,P是线段CD的中点,则三棱锥PA1B1A的左视图为()图713 D如图,画出原正方体的左视图,显然对于三棱锥PA1B1A,B(C)点均消失了,其余各点均在,从而其左视图为D.角度2已知三视图判定几何体(2017全国卷)某多面体的三视图如图714所示,其中主视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()图714A10B12C14D16B观察三视图可知该多面体是由直三棱柱和三棱锥组合而成的
9、,且直三棱柱的底面是直角边长为2的等腰直角三角形,侧棱长为2.三棱锥的底面是直角边长为2的等腰直角三角形,高为2,如图所示因此该多面体各个面中有2个梯形,且这两个梯形全等,梯形的上底长为2,下底长为4,高为2,故这些梯形的面积之和为2(24)212.故选B.规律方法1.已知几何体,识别三视图的技巧已知几何体画三视图时,可先找出各个顶点在投影面上的投影,然后再确定线在投影面上的实虚.2.已知三视图,判断几何体的技巧(1)对柱、锥、台、球的三视图要熟悉.(2)明确三视图的形成原理,并能结合空间想象将三视图还原为直观图.(3)遵循“长对正、高平齐、宽相等”的原则.易错警示:对于简单组合体或切割体的三
10、视图,应注意它们的交线的位置,区分好实线和虚线的不同. 跟踪训练(1)(2018福州质检)如图715,网格纸上小正方形的边长为1,粗线画的是某几何体的三视图,则此几何体各面中直角三角形的个数是()图715A2B3C4D5(2)(2018北京东城区综合练习(二) 日晷是中国古代利用日影测得时刻的一种计时工具,又称“日规”通常由铜制的指针和石制的圆盘组成,铜制的指针叫作“晷针”,垂直地穿过圆盘中心,石制的圆盘叫作“晷面”,它放在石台上,其原理就是利用太阳的投影方向来测定并划分时刻利用日晷计时的方法是人类在天文计时领域的重大发明,这项发明被人类沿用达几千年之久下图716是一位游客在故宫中拍到的一个日
11、晷照片,假设相机镜头正对的方向为主视方向,则根据图片判断此日晷的左视图可能为() 图716(1)C(2)D由三视图可得该几何体是如图所示的四棱锥PABCD,由图易知四个侧面都是直角三角形,故选C.(2)因为相机镜头正对的方向为主视方向,所以左视图中圆盘为椭圆,指针上半部分为实线,下半部分为虚线,可能是D,故选D.简单几何体的直观图已知正三角形ABC的边长为a,那么ABC的平面直观图ABC的面积为()A.a2 B.a2 C.a2 D.a2D如图(1)(2)所示的实际图形和直观图,由(2)可知,ABABa,OCOCa,在图(2)中作CDAB于D,则CDOCa,所以SABCABCDaaa2.规律方法
12、1.斜二测画法原图与直观图中的“三变”与“三不变”“三变”“三不变”2.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系:S直观图S原图形.跟踪训练(2017邯郸三次联考)有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图717所示),ABC45,ABAD1,DCBC,则这块菜地的面积为_. 【导学号:79140220】图7172如图(1),在直观图中,过点A作AEBC,垂足为E.(1)(2)在RtABE中,AB1,ABE45,BE.又四边形AECD为矩形,ADEC1,BCBEEC1.由此还原为原图形如图(2)所示,是直角梯形ABCD.在梯形ABCD中,AD1,BC1,AB2,这块菜地的面积S(ADBC)AB22.