2019年高考数学一轮复习课时分层训练47双曲线文北师大版2.doc

上传人:荣*** 文档编号:2611402 上传时间:2020-04-24 格式:DOC 页数:5 大小:87.50KB
返回 下载 相关 举报
2019年高考数学一轮复习课时分层训练47双曲线文北师大版2.doc_第1页
第1页 / 共5页
2019年高考数学一轮复习课时分层训练47双曲线文北师大版2.doc_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《2019年高考数学一轮复习课时分层训练47双曲线文北师大版2.doc》由会员分享,可在线阅读,更多相关《2019年高考数学一轮复习课时分层训练47双曲线文北师大版2.doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、课时分层训练(四十七)双曲线A组基础达标(建议用时:30分钟)一、选择题1下列双曲线中,焦点在y轴上且渐近线方程为y2x的是() 【导学号:00090300】Ax21By21Cx21Dy21C由于焦点在y轴上,且渐近线方程为y2x.2,则a2BC中a2,b1满足2(2015湖南高考)若双曲线1的一条渐近线经过点(3,4),则此双曲线的离心率为()A BCDD由双曲线的渐近线过点(3,4)知,.又b2c2a2,即e21,e2,e.3(2017全国卷)若a1,则双曲线y21的离心率的取值范围是()A(,)B(,2)C(1,)D(1,2)C由题意得双曲线的离心率e.e21.a1,01,112,1e.

2、故选C4已知F为双曲线C:x2my23m(m0)的一个焦点,则点F到C的一条渐近线的距离为()AB3CmD3mA由双曲线方程知a23m,b23,c.不妨设点F为右焦点,则F(,0)又双曲线的一条渐近线为xy0,d.5(2017成都调研)过双曲线x21的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A,B两点,则|AB|()AB2C6D4D由题意知,双曲线x21的渐近线方程为yx,将xc2代入得y2,即A,B两点的坐标分别为(2,2),(2,2),所以|AB|4.二、填空题6已知双曲线y21(a0)的一条渐近线为xy0,则a_.双曲线y21的渐近线为y,已知一条渐近线为xy0,即yx,因为a

3、0,所以,所以a.7(2016山东高考)已知双曲线E:1(a0,b0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|3|BC|,则E的离心率是_. 【导学号:00090301】2如图,由题意知|AB|,|BC|2C又2|AB|3|BC|,232c,即2b23ac,2(c2a2)3ac,两边同除以a2,并整理得2e23e20,解得e2(负值舍去)8(2018黄山模拟)若圆(x3)2y21上只有一点到双曲线1(a0,b0)的一条渐近线的距离为1,则该双曲线的离心率为_ 【导学号:00090302】不妨取渐近线为bxay0,由题意得圆心到渐近线bxay0的距离等于2,

4、即2,所以.所以e21,即e.三、解答题9已知椭圆D:1与圆M:x2(y5)29,双曲线G与椭圆D有相同焦点,它的两条渐近线恰好与圆M相切,求双曲线G的方程解椭圆D的两个焦点为F1(5,0),F2(5,0),因而双曲线中心在原点,焦点在x轴上,且c5.3分设双曲线G的方程为1(a0,b0),渐近线方程为bxay0且a2b225,8分又圆心M(0,5)到两条渐近线的距离为r3.3,得a3,b4,10分双曲线G的方程为1.12分10已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点(4,),点M(3,m)在双曲线上(1)求双曲线的方程;(2)求证:0;(3)求F1MF2的面积解(1

5、)e,则双曲线的实轴、虚轴相等设双曲线方程为x2y2.2分过点(4,),1610,即6.双曲线方程为x2y26.4分(2)证明:(32,m),(23,m)(32)(32)m23m2.6分M点在双曲线上,9m26,即m230,0.8分(3)F1MF2的底|F1F2|4.由(2)知m.10分F1MF2的高h|m|,SF1MF246.12分B组能力提升(建议用时:15分钟)1(2017河南中原名校联考)过双曲线1(a0,b0)的右焦点与对称轴垂直的直线与渐近线交于A,B两点,若OAB的面积为,则双曲线的离心率为()ABCDD由题意可求得|AB|,所以SOABc,整理得.因此e.2(2017天津河西区

6、质检)已知双曲线1(a0,b0)的一个焦点为F(2,0),且双曲线的渐近线与圆(x2)2y23相切,则双曲线的方程为_ 【导学号:00090303】x21由双曲线的渐近线yx,即bxay0与圆(x2)2y23相切,则b23a2.又双曲线的一个焦点为F(2,0),a2b24,联立,解得a21,b23.故所求双曲线的方程为x21.3已知椭圆C1的方程为y21,双曲线C2的左、右焦点分别是C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点(1)求双曲线C2的方程;(2)若直线l:ykx与双曲线C2恒有两个不同的交点A和B,且2(其中O为原点),求k的取值范围解(1)设双曲线C2的方程为1(a0,b0),则a23,c24,再由a2b2c2,得b21.4分故C2的方程为y21.5分(2)将ykx代入y21,得(13k2)x26kx90.由直线l与双曲线C2交于不同的两点,得k2且k22,得x1x2y1y22,2,即0,解得k23.10分由得k21,故k的取值范围为.12分

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁