《2022年高三数学辅导知识点归纳.docx》由会员分享,可在线阅读,更多相关《2022年高三数学辅导知识点归纳.docx(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022年高三数学辅导知识点归纳 .人生应当如蜡烛一样,从顶燃究竟,始终都是光明的。 学习不是享乐,也不是受苦;而是行动,在每个明天,我们命定的目标和道路,都要比今日前进一步。以下是我给大家整理的高三数学辅导学问点归纳,希望能帮助到你! 高三数学辅导学问点归纳1 一、排列 1定义 (1)从n个不同元素中取出m个元素,根据肯定的依次排成一列,叫做从n个不同元素中取出m个元素的一排列。 (2)从n个不同元素中取出m个元素的全部排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn. 2排列数的公式与性质 (1)排列数的公式:Amn=n(n-1)(n-2)(n-m+1) 特例:当m=n时,
2、Amn=n!=n(n-1)(n-2)321 规定:0!=1 二、组合 1定义 (1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合 (2)从n个不同元素中取出m个元素的全部组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。 2比较与鉴别 由排列与组合的定义知,获得一个排列须要“取出元素”和“对取出元素按肯定依次排成一列”两个过程,而获得一个组合只须要“取出元素”,不管怎样的依次并成一组这一个步骤。 排列与组合的区分在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的依次有关。因此,所给问题是否与取出元素的依次有关,是
3、推断这一问题是排列问题还是组合问题的理论依据。 三、排列组合与二项式定理学问点 1.计数原理学问点 乘法原理:N=n1n2n3nM(分步)加法原理:N=n1+n2+n3+nM(分类) 2.排列(有序)与组合(无序) Anm=n(n-1)(n-2)(n-3)-(n-m+1)=n!/(n-m)!Ann=n! Cnm=n!/(n-m)!m! Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k! 3.排列组合混合题的解题原则:先选后排,先分再排 排列组合题的主要解题方法:优先法:以元素为主,应先满意特别元素的要求,再考虑其他元素.以位置为主考虑,即先满意特别位置的要求,再考
4、虑其他位置. 捆绑法(集团元素法,把某些必需在一起的元素视为一个整体考虑) 插空法(解决相间问题)间接法和去杂法等等 在求解排列与组合应用问题时,应留意: (1)把详细问题转化或归结为排列或组合问题; (2)通过分析确定运用分类计数原理还是分步计数原理; (3)分析题目条件,避开“选取”时重复和遗漏; (4)列出式子计算和作答. 常常运用的数学思想是: 分类探讨思想;转化思想;对称思想. 4.二项式定理学问点: (a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+Cnran-rbr+-+Cnn-1abn-1+Cnnbn 特殊地:(1+x)n=1+Cn1x+Cn
5、2x2+Cnrxr+Cnnxn 主要性质和主要结论:对称性Cnm=Cnn-m 二项式系数在中间。(要留意n为奇数还是偶数,答案是中间一项还是中间两项) 全部二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+Cnr+Cnn=2n 奇数项二项式系数的和=偶数项而是系数的和 Cn0+Cn2+Cn4+Cn6+Cn8+=Cn1+Cn3+Cn5+Cn7+Cn9+=2n-1 通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。 5.二项式定理的应用:解决有关近似计算、整除问题,运用二项绽开式定理并且结合放缩法证明与指数有关的不等式。 6.留意二项式系数与
6、项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区分,在求某几项的系数的和时留意赋值法的应用。 高三数学辅导学问点归纳2 一、求动点的轨迹方程的基本步骤 建立适当的坐标系,设出动点M的坐标; 写出点M的集合; 列出方程=0; 化简方程为最简形式; 检验。 二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。 直译法:干脆将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。 定义法:假如能够确定动点的轨迹满意某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。 相关点法
7、:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满意的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。 参数法:当动点坐标x、y之间的干脆关系难以找到时,往往先找寻x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。 交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。 _直译法:求动点轨迹方程的一般步骤 建系建立适当的坐标系; 设点设轨迹上的任一点P(x,y); 列式列出动点p所满意的关系式; 代换依条件的特点,
8、选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简; 证明证明所求方程即为符合条件的动点轨迹方程。 高三数学辅导学问点归纳3 1、圆柱体: 表面积:2Rr+2Rh体积:R2h(R为圆柱体上下底圆半径,h为圆柱体高) 2、圆锥体: 表面积:R2+R(h2+R2)的平方根体积:R2h/3(r为圆锥体低圆半径,h为其高, 3、正方体 a-边长,S=6a2,V=a3 4、长方体 a-长,b-宽,c-高S=2(ab+ac+bc)V=abc 5、棱柱 S-底面积h-高V=Sh 6、棱锥 S-底面积h-高V=Sh/3 7、棱台 S1和S2-上、下底面积h-高V=hS1+S2+(S1S2)1/2/3
9、 8、拟柱体 S1-上底面积,S2-下底面积,S0-中截面积 h-高,V=h(S1+S2+4S0)/6 9、圆柱 r-底半径,h-高,C底面周长 S底底面积,S侧侧面积,S表表面积C=2r S底=r2,S侧=Ch,S表=Ch+2S底,V=S底h=r2h 10、空心圆柱 R-外圆半径,r-内圆半径h-高V=h(R2-r2) 11、直圆锥 r-底半径h-高V=r2h/3 12、圆台 r-上底半径,R-下底半径,h-高V=h(R2+Rr+r2)/3 13、球 r-半径d-直径V=4/3r3=d3/6 14、球缺 h-球缺高,r-球半径,a-球缺底半径V=h(3a2+h2)/6=h2(3r-h)/3
10、15、球台 r1和r2-球台上、下底半径h-高V=h3(r12+r22)+h2/6 16、圆环体 R-环体半径D-环体直径r-环体截面半径d-环体截面直径 V=22Rr2=2Dd2/4 17、桶状体 D-桶腹直径d-桶底直径h-桶高 V=h(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心) V=h(2D2+Dd+3d2/4)/15(母线是抛物线形) 高三数学辅导学问点归纳第8页 共8页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页