《2022年高三数学科下册知识点梳理.docx》由会员分享,可在线阅读,更多相关《2022年高三数学科下册知识点梳理.docx(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022年高三数学科下册知识点梳理 学习任何学科都要靠着自生的努力去学习,不能以为有些科目不重要就在上课时不听讲。学习时也要有着一种学习仔细的看法,因为这是你做为高三学子必需有的看法,以下是我给大家整理的高三数学科下册学问点梳理,希望能帮助到你! 高三数学科下册学问点梳理1 (一)导数第肯定义 设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量x(x0+x也在该邻域内)时,相应地函数取得增量y=f(x0+x)-f(x0);假如y与x之比当x0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数第肯定
2、义 (二)导数其次定义 设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有改变x(x-x0也在该邻域内)时,相应地函数改变y=f(x)-f(x0);假如y与x之比当x0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数其次定义 (三)导函数与导数 假如函数y=f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。这时函数y=f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y',f'(x),d
3、y/dx,df(x)/dx。导函数简称导数。 (四)单调性及其应用 1.利用导数探讨多项式函数单调性的一般步骤 (1)求f(x) (2)确定f(x)在(a,b)内符号(3)若f(x)0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f(x)0在(a,b)上恒成立,则f(x)在(a,b)上是减函数 2.用导数求多项式函数单调区间的一般步骤 (1)求f(x) (2)f(x)0的解集与定义域的交集的对应区间为增区间;f(x)0的解集与定义域的交集的对应区间为减区间 高三数学科下册学问点梳理2 一、充分条件和必要条件 当命题“若A则B”为真时,A称为B的充分条件,B称为A的必要条件。 二、充
4、分条件、必要条件的常用推断法 1.定义法:推断B是A的条件,事实上就是推断B=A或者A=B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义推断即可 2.转换法:当所给命题的充要条件不易推断时,可对命题进行等价装换,例如改用其逆否命题进行推断。 3.集合法 在命题的条件和结论间的关系推断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则: 若A?B,则p是q的充分条件。 若A?B,则p是q的必要条件。 若A=B,则p是q的充要条件。 若A?B,且B?A,则p是q的既不充分也不必要条件。 三、学问扩展 1.四种命题反映出命题之间的内在联系,要留意结合实际问题,
5、理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为: (1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题; (2)同时否定命题的条件和结论,所得的新命题就是原来的否命题; (3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。 2.由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这亲密的联系,故在推断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面推断较难时,可转化为应用该命题的逆否命题进行推断。一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。 高三数学科下册学问点梳理3 正弦定理 a/sin
6、A=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积 S=c_h 斜棱柱侧面积 S=c'_h 正棱锥侧面积 S=1/2c_h' 正棱台侧面积 S=1/2(c+c')h' 圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的
7、表面积 S=4pi_r2 圆柱侧面积 S=c_h=2pi_h 圆锥侧面积 S=1/2_c_l=pi_r_l 弧长公式 l=a_r a是圆心角的弧度数r 0 扇形面积公式 s=1/2_l_r 锥体体积公式 V=1/3_S_H 圆锥体体积公式 V=1/3_pi_r2h 斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长 柱体体积公式 V=s_h 圆柱体 V=pi_r2h 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosA
8、cosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga sin(2)=2sincos cos(2)=cos2()-sin2()=2cos2()-1=1-2sin2() tan(2)=2tan/1-tan2() 高三数学科下册学问点梳理第5页 共5页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页