《2022年高三数学知识点梳理汇总.docx》由会员分享,可在线阅读,更多相关《2022年高三数学知识点梳理汇总.docx(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022年高三数学知识点梳理汇总 与高一高二不同之处在于,此时复习力学部分学问是为了更好的与高考考纲相结合,尤其水平中等或中等偏下的学生,此时须要进行查漏补缺,但也须要同时提升实力,填补学问、技能的空白。接下来是我为大家整理的高三数学学问点梳理,希望大家喜爱! 高三数学学问点梳理一 数列是中学数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题常常是综合题,常常把数列学问和指数函数、对数函数和不等式的学问综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。 探究性问题是高考的热点,常在数列解答题中出现。本章中
2、还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类探讨等重要思想,以及配方法、换元法、待定系数法等基本数学方法。 近几年来,高考关于数列方面的命题主要有以下三个方面; (1)数列本身的有关学问,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。 (2)数列与其它学问的结合,其中有数列与函数、方程、不等式、三角、几何的结合。 (3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最终一题难度较大。 1.在驾驭等差数列、等比数列的定义、性质、通项
3、公式、前n项和公式的基础上,系统驾驭解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,敏捷地运用数列学问和方法解决数学和实际生活中的有关问题; 2.在解决综合题和探究性问题实践中加深对基础学问、基本技能和基本数学思想方法的相识,沟通各类学问的联系,形成更完整的学问网络,提高分析问题和解决问题的实力, 进一步培育学生阅读理解和创新实力,综合运用数学思想方法分析问题与解决问题的实力 高三数学学问点梳理二 随机抽样 简介 (抽签法、随机样数表法)经常用于总体个数较少时,它的主要特征是从总体中逐个抽取; 优点:操作简便易行 缺点:总体过大不易实行 方法 (1)抽签法 一般地,抽
4、签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌匀称后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。 (抽签法简洁易行,适用于总体中的个数不多时。当总体中的个体数较多时,将总体“搅拌匀称”就比较困难,用抽签法产生的样本代表性差的可能性很大) (2)随机数法 随机抽样中,另一个常常被采纳的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。 分层抽样 简介 分层抽样主要特征分层按比例抽样,主要运用于总体中的个体有明显差异。共同点:每个个体被抽到的概率都相等N/M。 定义 一般地,在抽样时,将总体分成互不交叉的层,然后根据肯定的比例
5、,从各层独立地抽取肯定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样。 整群抽样 定义 什么是整群抽样 整群抽样又称聚类抽样。是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。 应用整群抽样时,要求各群有较好的代表性,即群内各单位的差异要大,群间差异要小。 优缺点 整群抽样的优点是实施便利、节约经费; 整群抽样的缺点是往往由于不同群之间的差异较大,由此而引起的抽样误差往往大于简洁随机抽样。 实施步骤 先将总体分为i个群,然后从i个群钟随即抽取若干个群,对这些群内全部个体或单元均进行调查。抽样过程可分为以下几个步骤
6、: 一、确定分群的标注 二、总体(N)分成若干个互不重叠的部分,每个部分为一群。 三、据各样本量,确定应当抽取的群数。 四、采纳简洁随机抽样或系统抽样方法,从i群中抽取确定的群数。 例如,调查中学生患近视眼的状况,抽某一个班做统计;进行产品检验;每隔8h抽1h生产的全部产品进行检验等。 与分层抽样的区分 整群抽样与分层抽样在形式上有相像之处,但事实上差别很大。 分层抽样要求各层之间的差异很大,层内个体或单元差异小,而整群抽样要求群与群之间的差异比较小,群内个体或单元差异大; 分层抽样的样本是从每个层内抽取若干单元或个体构成,而整群抽样则是要么整群抽取,要么整群不被抽取。 系统抽样 定义 当总体
7、中的个体数较多时,采纳简洁随机抽样显得较为费事。这时,可将总体分成均衡的几个部分,然后根据预先定出的规则,从每一部分抽取一个个体,得到所须要的样本,这种抽样叫做系统抽样。 步骤 一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样: (1)先将总体的N个个体编号。有时可干脆利用个体自身所带的号码,如学号、准考证号、门牌号等; (2)确定分段间隔k,对编号进行分段。当N/n(n是样本容量)是整数时,取k=N/n; (3)在第一段用简洁随机抽样确定第一个个体编号l(lk); (4)根据肯定的规则抽取样本。通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3
8、个个体编号(l+2k),依次进行下去,直到获得整个样本。 高三数学学问点梳理三 (一)导数第肯定义 设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有增量x(x0+x也在该邻域内)时,相应地函数取得增量y=f(x0+x)-f(x0);假如y与x之比当x0时极限存在,则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数第肯定义 (二)导数其次定义 设函数y=f(x)在点x0的某个领域内有定义,当自变量x在x0处有改变x(x-x0也在该邻域内)时,相应地函数改变y=f(x)-f(x0);假如y与x之比当x0时极限存在,
9、则称函数y=f(x)在点x0处可导,并称这个极限值为函数y=f(x)在点x0处的导数记为f'(x0),即导数其次定义 (三)导函数与导数 假如函数y=f(x)在开区间I内每一点都可导,就称函数f(x)在区间I内可导。这时函数y=f(x)对于区间I内的每一个确定的x值,都对应着一个确定的导数,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y',f'(x),dy/dx,df(x)/dx。导函数简称导数。 (四)单调性及其应用 1.利用导数探讨多项式函数单调性的一般步骤 (1)求f(x) (2)确定f(x)在(a,b)内符号(3)若f(x)0在(a,b)
10、上恒成立,则f(x)在(a,b)上是增函数;若f(x)0在(a,b)上恒成立,则f(x)在(a,b)上是减函数 2.用导数求多项式函数单调区间的一般步骤 (1)求f(x) (2)f(x)0的解集与定义域的交集的对应区间为增区间;f(x)0的解集与定义域的交集的对应区间为减区间 高三数学学问点梳理四 1.数列的定义 按肯定次序排列的一列数叫做数列,数列中的每一个数都叫做数列的项. (1)从数列定义可以看出,数列的数是按肯定次序排列的,假如组成数列的数相同而排列次序不同,那么它们就不是同一数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列. (2)在数列的定义中并没有规定数列中的
11、数必需不同,因此,在同一数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,构成数列:-1,1,-1,1,. (4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n. (5)次序对于数列来讲是非常重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,明显数列与数集有本质的区分.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而2,3,4,5,6中元素不论按怎样的次序排列都是同一个集合. 2.数列的分类
12、 (1)依据数列的项数多少可以对数列进行分类,分为有穷数列和无穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,2n-1表示有穷数列,假如把数列写成1,3,5,7,9,或1,3,5,7,9,2n-1,它就表示无穷数列. (2)根据项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摇摆数列、常数列. 3.数列的通项公式 数列是按肯定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的, 这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公
13、式;有的数列虽然有通项公式,但在形式上,又不肯定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,通项公式更非.如:数列1,2,3,4, 由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多视察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循. 再强调对于数列通项公式的理解留意以下几点: (1)数列的通项公式事实上是一个以正整数集N_它的有限子集1,2,n为定义域的函数的表达式. (2)假如知道了数列的通项公式,那么依次用1,2,3,去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可推断某
14、数是否是某数列中的一项,假如是的话,是第几项. (3)如全部的函数关系不肯定都有解析式一样,并不是全部的数列都有通项公式. 如2的不足近似值,精确到1,0.1,0.01,0.001,0.0001,所构成的数列1,1.4,1.41,1.414,1.4142,就没有通项公式. (4)有的数列的通项公式,形式上不肯定是的,正如举例中的: (5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不. 4.数列的图象 对于数列4,5,6,7,8,9,10每一项的序号与这一项有下面的对应关系: 序号:1234567 项:45678910 这就是说,上面可以看成是一个
15、序号集合到另一个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是一个定义域为正整集N_或它的有限子集1,2,3,n)的函数,当自变量从小到大依次取值时,对应的一列函数值.这里的函数是一种特别的函数,它的自变量只能取正整数. 由于数列的项是函数值,序号是自变量,数列的通项公式也就是相应函数和解析式. 数列是一种特别的函数,数列是可以用图象直观地表示的. 数列用图象来表示,可以以序号为横坐标,相应的项为纵坐标,描点画图来表示一个数列,在画图时,为便利起见,在平面直角坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表示可以直观地看出数列的改变状况,但不精确. 把数列与函数比较,数列是特
16、别的函数,特别在定义域是正整数集或由以1为首的有限连续正整数组成的集合,其图象是无限个或有限个孤立的点. 5.递推数列 一堆钢管,共堆放了七层,自上而下各层的钢管数构成一个数列:4,5,6,7,8,9,10. 数列还可以用如下方法给出:自上而下第一层的钢管数是4,以下每一层的钢管数都比上层的钢管数多1。 高三数学学问点梳理第11页 共11页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页第 11 页 共 11 页