《2022年高一数学总复习知识点.docx》由会员分享,可在线阅读,更多相关《2022年高一数学总复习知识点.docx(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022年高一数学总复习知识点 在学习上我们要吸纳新的技能和学问充溢自我,提高分析和处理工作的本领,注意总结阅历,完善自我。这样才可以做到最高想的学习效率,来帮助我们迎接考试,以下是我给大家整理的高一数学总复习学问点,希望能帮助到你! 高一数学总复习学问点1 定义: x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特殊地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。 范围: 倾斜角的取值范围是0180。 理解: (1)留意“两个方向”:直线向上的方向、x轴的正方向; (2)规定当直线和x轴平行或重合时,它的倾斜角为0度。 意义: 直线的倾斜角,体现了直线对x轴正向的倾斜程度; 在平面
2、直角坐标系中,每一条直线都有一个确定的倾斜角; 倾斜角相同,未必表示同一条直线。 公式: k=tan k0时(0,90) k0时(90,180) k=0时=0 当=90时k不存在 ax+by+c=0(a0)倾斜角为A, 则tanA=-a/b, A=arctan(-a/b) 当a0时, 倾斜角为90度,即与X轴垂直 高一数学总复习学问点2 1、柱、锥、台、球的结构特征 (1)棱柱: 定义:有两个面相互平行,其余各面都是四边形,且每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱或用对角线
3、的端点字母,如五棱柱。 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相像比等于顶点到截面距离与高的比的平方。 (3)棱台: 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
4、表示:用各顶点字母,如五棱台 几何特征:上下底面是相像的平行多边形侧面是梯形侧棱交于原棱锥的顶点 (4)圆柱: 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。 几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面绽开图是一个矩形。 (5)圆锥: 定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。 几何特征:底面是一个圆;母线交于圆锥的顶点;侧面绽开图是一个扇形。 (6)圆台: 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面绽开图是一个弓形。 (7)球体
5、: 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:球的截面是圆;球面上随意一点到球心的距离等于半径。 2、空间几何体的三视图 定义三视图:正视图(光线从几何体的前面对后面正投影);侧视图(从左向右)、俯视图(从上向下) 注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度; 俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度; 侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。 3、空间几何体的直观图斜二测画法 斜二测画法特点: 原来与x轴平行的线段仍旧与x平行且长度不变; 原来与y轴平行的线段仍旧与y平行,长度为原来的一半。
6、 高一数学总复习学问点3 (1)指数函数的定义域为全部实数的集合,这里的前提是a大于0,对于a不大于0的状况,则必定使得函数的定义域不存在连续的区间,因此我们不予考虑。 (2)指数函数的值域为大于0的实数集合。 (3)函数图形都是下凹的。 (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。 (5)可以看到一个明显的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6)函数总是在某一个方向上无限趋
7、向于X轴,永不相交。 (7)函数总是通过(0,1)这点。 (8)明显指数函数无界。 奇偶性 定义 一般地,对于函数f(x) (1)假如对于函数定义域内的随意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。 (2)假如对于函数定义域内的随意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。 (3)假如对于函数定义域内的随意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。 (4)假如对于函数定义域内的随意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。 高一数学总复习学问点第6页 共6页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页第 6 页 共 6 页