2021高三数学北师大版(文)一轮课后限时集训:17 利用导数证明不等式 .doc

上传人:荣*** 文档编号:2551379 上传时间:2020-04-19 格式:DOC 页数:3 大小:132KB
返回 下载 相关 举报
2021高三数学北师大版(文)一轮课后限时集训:17 利用导数证明不等式 .doc_第1页
第1页 / 共3页
2021高三数学北师大版(文)一轮课后限时集训:17 利用导数证明不等式 .doc_第2页
第2页 / 共3页
点击查看更多>>
资源描述

《2021高三数学北师大版(文)一轮课后限时集训:17 利用导数证明不等式 .doc》由会员分享,可在线阅读,更多相关《2021高三数学北师大版(文)一轮课后限时集训:17 利用导数证明不等式 .doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、利用导数证明不等式建议用时:45分钟1已知函数f(x)ln xax2(2a1)x.(1)讨论f(x)的单调性;(2)当a0时,证明f(x)2.解(1)f(x)的定义域为(0,),f(x)2ax2a1.当a0,则当x(0,)时,f(x)0,故f(x)在(0,)上单调递增当a0,则当x时,f(x)0;当x时,f(x)0.故f(x)在上单调递增,在上单调递减(2)证明:由(1)知,当a0时,f(x)在x取得最大值,最大值为fln1.所以f(x)2等价于ln12,即ln10.设g(x)ln xx1,则g(x)1.当x(0,1)时,g(x)0;当x(1,)时,g(x)0.所以g(x)在(0,1)上单调递

2、增,在(1,)上单调递减故当x1时,g(x)取得最大值,最大值为g(1)0.所以当x0时,g(x)0.从而当a0时,ln10,即f(x)2.2(2018全国卷)已知函数f(x)xaln x.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:a2.解(1)f(x)的定义域为(0,),f(x)1.()若a2,则f(x)0,当且仅当a2,x1时f(x)0,所以f(x)在(0,)单调递减()若a2,令f(x)0得,x或x.当x时,f(x)0;当x时,f(x)0.所以f(x)在,上单调递减,在上单调递增(2)证明:由(1)知,f(x)存在两个极值点时,当且仅当a2.由于f(x)

3、的两个极值点x1,x2满足x2ax10,所以x1x21,不妨设x1x2,则x21.由于1a2a2a,所以a2等价于x22ln x20.设函数g(x)x2ln x,由(1)知,g(x)在(0,)上单调递减,又g(1)0,从而当x(1,)时,g(x)0.所以x22ln x20,即a2.3已知函数f(x)ex,g(x)ln(xa)b.(1)当b0时,f(x)g(x)0恒成立,求整数a的最大值;(2)求证:ln 2(ln 3ln 2)2(ln 4ln 3)3ln(n1)ln nn(nN*)解(1)现证明exx1,设F(x)exx1,则F(x)ex1,当x(0,)时,F(x)0,当x(,0)时,F(x)

4、0,所以F(x)在(0,)上单调递增,在(,0)上单调递减,所以F(x)minF(0)0,即F(x)0恒成立,即exx1.同理可得ln(x2)x1,即exln(x2),当a2时,ln(xa)ln(x2)ex,所以当a2时,f(x)g(x)0恒成立当a3时,e0ln a,即exln(xa)0不恒成立故整数a的最大值为2.(2)证明:由(1)知exln(x2),令x,则eln,即eln(n1)ln nn,所以e0e1e2 en1ln 2(ln 3ln 2)2(ln 4ln 3)3ln(n1)ln nn,又因为e0e1e2en1, 所以ln 2(ln 3ln 2)2(ln 4ln 3)3ln(n1)ln nn.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 考试试题 > 高中题库

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁