《2022年高中物理中的弹簧问题归类剖析 .pdf》由会员分享,可在线阅读,更多相关《2022年高中物理中的弹簧问题归类剖析 .pdf(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高中物理中的弹簧问题归类剖析有关弹簧的题目在高考中几乎年年出现,由于弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的认识,不能建立与之相关的物理模型并进行分类,导致解题思路不清、效率低下、错误率较高. 在具体实际问题中,由于弹簧特性使得与其相连物体所组成系统的运动状态具有很强的综合性和隐蔽性,加之弹簧在伸缩过程中涉及力和加速度、功和能、冲量和动量等多个物理概念和规律,所以弹簧试题也就成为高考中的重、难、热点,一、 “轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型 .由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,
2、否则,这小段弹簧的加速度会无限大. 故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力. 弹簧一端受力为F ,另一端受力一定也为F , 若是弹簧秤,则弹簧秤示数为F . 【例 1】如图 3-7-1 所示,一个弹簧秤放在光滑的水平面上,外壳质量m不能忽略,弹簧及挂钩质量不计,施加水平方向的力1F、2F,且12FF,则弹簧秤沿水平方向的加速度为,弹簧秤的读数为 . 【解析】以整个弹簧秤为研究对象,利用牛顿运动定律得:12FFma,即12FFam仅以轻质弹簧为研究对象,则弹簧两端的受力都1F,所以弹簧秤的读数为1F. 说明 :2F作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内
3、侧提供的. 【答案】12FFam1F二、质量不可忽略的弹簧【例 2】如图 3-7-2 所示, 一质量为M、长为 L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动. 试分析弹簧上各部分的受力情况. 【解析】弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度FaM, 取弹簧左部任意长度x为研究对象,设其质量为m得弹簧上的弹力为:xxFxTmaMFLML【答案】xxTFL三、 弹簧的弹力不能突变( 弹簧弹力瞬时 ) 问题弹簧 ( 尤其是软质弹簧) 弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的
4、弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变. 【例 3】如图 3-7-3 所示,木块 A与 B 用轻弹簧相连, 竖直放在木块C 上,三者静置于地面,ABC、 、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块 A 和 B 的加速度分别是Aa= 与Ba= 【解析】由题意可设ABC、 、的质量分别为23mm m、 、,以木块A为研究对象,抽出木块C前,木块A受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A受到重力和弹力的大小和方向均不变,故木块A的瞬时加速度为 0. 以木块AB、为研究对象, 由平衡条件可知
5、,木块 C 对木块 B 的作用力3CBFmg. 以木块 B 为研究对象,木块B 受到重力、弹力和CBF三力平衡,抽出木块 C 的瞬时,木块 B 受到重力和弹力的大小和方向均不变,CBF瞬时变为0,故木块 C 的瞬时合外力为3mg, 竖直向下,瞬时加速度为1.5g. 图 3-7-2 图 3-7-1 图 3-7-3 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 8 页【答案】 0 说明:区别于不可伸长的轻质绳中张力瞬间可以突变.【例 4】如图 3-7-4 所示,质量为 m的小球用水平弹簧连接,并用倾角为030的光滑木板AB托住,使小球恰好
6、处于静止状态. 当AB突然向下撤离的瞬间,小球的加速度为 ( ) A. 0B.大小为2 33g,方向竖直向下C.大小为2 33g,方向垂直于木板向下D. 大小为2 33g, 方向水平向右【解析】末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力NF作用而平衡,如图3-7-5 所示,有cosNmgF. 撤离木板的瞬间,重力G 和弹力 F 保持不变 ( 弹簧弹力不能突变) ,而木板支持力NF立即消失 , 小球所受 G 和 F 的合力大小等于撤之前的NF ( 三力平衡 ) ,方向与NF相反,故加速度方向为垂直木板向下,大小为23cos3NFgagm【答案】 C. 四、弹簧长度的变化问题设劲度系数
7、为k的弹簧受到的压力为1F时压缩量为1x,弹簧受到的拉力为2F时伸长量为2x,此时的 “- ”号表示弹簧被压缩. 若弹簧受力由压力1F变为拉力2F,弹簧长度将由压缩量1x变为伸长量2x,长度增加量为12xx. 由胡克定律有 : 11()Fkx,22Fkx. 则:2121()()FFkxkx, 即Fk x说明 : 弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x 表示的物理意义是弹簧长度的改变量,并不是形变量. 【例 5】 如图 3-7-6 所示,劲度系数为1k的轻质弹簧两端分别与质量为1m、2m的物块 1、2 拴接,劲度系数为2k的轻质弹簧上端与物块2 拴接,下端压在桌面上 ( 不拴接
8、 ),整个系统处于平衡状态. 现将物块1 缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面. 在此过程中,物块2 的重力势能增加了 ,物块 1 的重力势能增加了 . 【解析】由题意可知,弹簧2k长度的增加量就是物块2 的高度增加量,弹簧2k长度的增加量与弹簧1k长度的增加量之和就是物块1 的高度增加量 . 由物体的受力平衡可知,弹簧2k的弹力将由原来的压力12()mmg变为0, 弹簧1k的弹力将由原来的压力1m g变为拉力2m g, 弹力的改变量也为12()mmg . 所以1k、2k弹簧的伸长量分别为:1211()mmgk和1221()mmgk故物块 2 的重力势能增加了221221()mmm
9、gk, 物块 1的重力势能增加了21121211()()mmmgkk【答案】221221()mmmgk21121211()()mmmgkk图 3-7-4 图 3-7-5 图 3-7-6 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 8 页五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律Fkx,其中 x 为弹簧的形变量,两端与物体相连时x亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题. 【例 6】如图 3-7-7 所示,在倾角为的光滑斜面上有两个用轻质弹簧相连接的物块AB、,其质量分别为ABmm、,弹簧的劲度系数为k, C
10、 为一固定挡板,系统处于静止状态,现开始用一恒力 F 沿斜面方向拉A使之向上运动,求B刚要离开 C 时A的加速度a和从开始到此时A的位移d( 重力加速度为g). 【解析】 系统静止时 , 设弹簧压缩量为1x, 弹簧弹力为1F, 分析A受力可知 :11sinAFkxm g解得 :1sinAm gxk在恒力 F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态 . 设物体 B 刚要离开挡板C 时弹簧的伸长量为2x,分析物体 B 的受力有 :2sinBkxm g, 解得2sinBm gxk设此时物体A的加速度为a,由牛顿第二定律有:2sinAAFm gkxm a解得 :()sinABAFmm
11、gam因物体 A 与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12dxx,即()sinABmmgdk【答案】()sinABmmgdk六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应 . 一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关. 以此来分析计算物体运动状态的可能变化. 结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,往往能达到事半功倍的效果 . 此时要先确定物体运动的平衡位
12、置,区别物体的原长位置,进一步确定物体运动为简谐运动 . 结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程 . 【例 7】 如图 3-7-8 所示,质量为m的物体 A用一轻弹簧与下方地面上质量也为m的物体 B 相连,开始时A和 B 均处于静止状态,此时弹簧压缩量为0 x,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端 C 握在手中,各段绳均刚好处于伸直状态,物体A上方的一段绳子沿竖直方向且足够长. 现在 C 端施加水平恒力F 使物体A 从静止开始向上运动.( 整个过程弹簧始终处在弹性限度以内). (1) 如果在 C 端所施加的恒力大小为3mg, 则在物体 B
13、 刚要离开地面时物体A的速度为多大? (2) 若将物体B 的质量增加到2m,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少 ? 【解析】由题意可知,弹簧开始的压缩量0mgxk,物体 B 刚要离开地面时弹簧的伸长量也是0mgxk. (1) 若3Fmg, 在弹簧伸长到0 x时,物体 B 离开地面,此时弹簧弹性势能与施力前相等,F 所做的功等于物体A增加的动能及重力势能的和. 即:201222Fxmgxmv 得: 02 2vgx(2) 所施加的力为恒力0F时,物体 B 不离开地面,类比竖直弹簧振子,物体A在竖直方向上图 3-7-7 图 3-7-8 精选学习资料 - - - - - - -
14、 - - 名师归纳总结 - - - - - - -第 3 页,共 8 页除了受变化的弹力外,再受到恒定的重力和拉力. 故物体 A做简谐运动 . 在最低点有:001Fmgkxma, 式中k为弹簧劲度系数,1a为在最低点物体A的加速度 . 在 最 高 点 , 物 体 B 恰 好 不 离 开 地 面 , 此 时 弹 簧 被 拉 伸 , 伸 长 量 为02x, 则 : 002(2)kxmgFma而0kxmg,简谐运动在上、下振幅处12aa,解得:032mgF也可以利用简谐运动的平衡位置求恒定拉力0F. 物体 A 做简谐运动的最低点压缩量为0 x,最高点伸长量为02x,则上下运动中点为平衡位置,即伸长量
15、为所在处. 由002xmgkF , 解得: 032mgF. 【答案】02 2gx32mg说明 : 区别原长位置与平衡位置. 和原长位置对应的形变量与弹力大小、方向、弹性势能相关, 和平衡位置对应的位移量与回复大小、方向、速度、加速度相关. 七与弹簧相关的临界问题通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等 . 此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论. 【例 8】如图 3-7-9 所示, AB、两木块叠放在竖直轻弹簧上,已知木块AB、的质量分别为0.42k
16、g和0.40kg,弹簧的劲度系数100/kNm,若在 A 上作用一个竖直向上的力F , 使 A 由静止开始以20.5/m s的加速度竖直向上做匀加速运动(210/gm s)求:(1) 使木块 A竖直做匀加速运动的过程中,力F 的最大值 ; (2) 若木块由静止开始做匀加速运动,直到AB、分离的过程中,弹簧的弹性势能减少了0.248J ,求这一过程中F 对木块做的功 . 【解析】此题难点在于能否确定两物体分离的临界点. 当0F( 即不加竖直向上F 力 ) 时,设木块AB、叠放在弹簧上处于平衡时弹簧的压缩量为x, 有: ()ABkxmmg, 即()ABmmgxk对木块 A施加力 F , A 、 B
17、 受力如图3-7-10 所示 , 对木块 A有 : AAFNmgm a对木块 B 有: BBkxNmgm a可知, 当0N时,木块 AB、加速度相同, 由式知欲使木块A匀加速运动, 随 N 减小 F 增大, 当0N时, F 取得了最大值mF, 即: ()4.41mAFmagN又当0N时, AB、开始分离,由式知,弹簧压缩量()Bkxmag,则()Bmagxk木块 A 、 B 的共同速度:22 ()va xx由题知,此过程弹性势能减少了0.248PPWEJ设F力所做的功为FW,对这一过程应用功能原理,得:21()() ()2FABABPWmm vmmg xxE联立式,且0.248PEJ, 得:2
18、9.64 10FWJ【答案】(1)4.41mFN29.6410FWJ【例 9】如图3-7-11所示,一质量为M 的塑料球形容器,在A 处与水平面接触. 它的内部有一直立的轻弹簧,弹簧下端固定于容器内部底部,上端系一带正电、质量为m的小球在竖直方向振动,当加一向上的匀强电场后,弹簧正好在原长时,小球恰好有最大速度.在振动过程中球形容器对桌面的最小压力为0,求小球振动的最大加速度和容器对桌面的最大压图 3-7-10 图 3-7-9 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 8 页力. 【解析】因为弹簧正好在原长时小球恰好速度最大,所以
19、有:qEmg小球在最高点时容器对桌面的压力最小,有:kxMg此时小球受力如图3-7-12 所示,所受合力为qEkxmgF由以上三式得小球的加速度mMga. 显然,在最低点容器对桌面的压力最大,由振动的对称性可知小球在最低点和最高点有相同的加速度,解以上式子得:Mgkx所以容器对桌面的压力为:MgkxMgFN2. 【答案】Mgm2Mg八、弹力做功与弹性势能的变化问题弹簧伸长或压缩时会储存一定的弹性势能,因此弹簧的弹性势能可以与机械能守恒规律综合应用 ,我们用公式212PEkx 计算弹簧势能, 弹簧在相等形变量时所具有的弹性势能相等一般是考试热点. 弹簧弹力做功等于弹性势能的减少量. 弹簧的弹力做
20、功是变力做功,一般可以用以下四种方法求解 : (1) 因该变力为线性变化,可以先求平均力,再用功的定义进行计算; (2) 利用 Fx 图线所包围的面积大小求解; (3) 用微元法计算每一小段位移做功,再累加求和; (4) 根据动能定理、能量转化和守恒定律求解. 由于弹性势能仅与弹性形变量有关,弹性势能的公式高考中不作定量要求,因此,在求弹力做功或弹性势能的改变时,一般从能量的转化与守恒的角度来求解. 特别是涉及两个物理过程中的弹簧形变量相等时,往往弹性势能的改变可以抵消或替代求解. 【例 10】如图 3-7-13 所示,挡板P 固定在足够高的水平桌面上,物块A和 B 大小可忽略,它们分别带有A
21、Q和BQ的电荷量,质量分别为Am和Bm. 两物块由绝缘的轻弹簧相连,一个不可伸长的轻绳跨过滑轮,一端与 B连接,另一端连接轻质小钩. 整个装置处于场强为E、方向水平向左的匀强电场中,A、 B 开始时静止,已知弹簧的劲度系数为k , 不计一切摩擦及A、 B 间的库仑力 , A、 B 所带电荷量保持不变,B 不会碰到滑轮 . (1) 若在小钩上挂质量为M 的物块 C 并由静止释放, 可使物块A对挡板 P 的压力恰为零, 但不会离开 P , 求物块 C 下降的最大距离h. (2) 若 C 的质量为 2M , 则当A刚离开挡板P 时, B 的速度多大 ? 【解析】通过物理过程的分析可知,当物块A刚离开
22、挡板P 时,弹力恰好与A所受电场力平衡,弹簧伸长量一定,前后两次改变物块 C 质量,在第 (2) 问对应的物理过程中,弹簧长度的变化及弹性势能的改变相同,可以替代求解. 设开始时弹簧压缩量为1x,由平衡条件1BkxQ E, 可得1BQ Exk设当A刚离开挡板时弹簧的伸长量为2x, 由2AkxQ E,可得 : 2AQ Exk故 C 下降的最大距离为: 12hxx图 3-7-13 图 3-7-11 图 3-7-12 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 8 页由三式可得: ()ABEhQQk(2) 由能量守恒定律可知,物块C 下落
23、过程中,C 重力势能的减少量等于物块B 电势能的增量和弹簧弹性势能的增量以及系统动能的增量之和. 当 C 的质量为 M 时,有:BMgHQ EhE弹当C的 质 量 为2M时 , 设A 刚 离 开 挡 板 时B 的 速 度 为v , 则 有 :212(2)2BBMgHQ EhEMmv弹由三式可得A刚离开 P 时 B 的速度为 : 2()(2)ABBMgE QQvkMm【答案】(1)()ABEhQQk(2)2()(2)ABBMgE QQvkMm【例 11】如图 3-7-14所示,质量为1m的物体A经一轻质弹簧与下方地面上的质量为2m的物体 B 相连,弹簧的劲度系数为k, 物体 AB、都处于静止状态
24、. 一不可伸长的轻绳一端绕过轻滑轮连接物体A,另一端连接一轻挂钩. 开始时各段绳都处于伸直状态,物体A上方的一段绳沿竖直方向. 现给挂钩挂一质量为2m的物体 C 并从静止释放, 已知它恰好能使物体B 离开地面但不继续上升. 若将物体 C 换成另一质量为12()mm的物体 D ,仍从上述初始位置由静止释放,则这次物体B刚离地时物体D的速度大小是多少?已知重力加速度为g【解析】开始时物体AB、静止,设弹簧压缩量为1x,则有:11kxm g悬挂物体 C 并释放后,物体C 向下、物体A 向上运动,设物体B 刚要离地时弹簧伸长量为2x,有22kxm gB 不再上升表明此时物体A、C的速度均为零,物体C
25、己下降到其最低点,与初状态相比,由机械能守恒得弹簧弹性势能的增加量为:212112()()Em g xxm g xx物体 C 换成物体D 后,物体 B 离地时弹簧势能的增量与前一次相同,由能量关系得:22211211211211()() ()()22mm vm vmm g xxm g xxE联立上式解得题中所求速度为:2112122()(2)m mmgvmmk【答案】2112122()(2)mmmgvmmk说明:研究对象的选择、物理过程的分析、临界条件的应用、能量转化守恒的结合往往在一些题目中需要综合使用. 九、弹簧弹力的双向性弹簧可以伸长也可以被压缩,因此弹簧的弹力具有双向性,亦即弹力既可能
26、是推力又可能是拉力,这类问题往往是一题多解. 【例 12】如图 3-7-15 所示,质量为m的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为0120,已知弹簧ab、对质点的作用力均为F ,则弹簧c对质点作用力的大小可能为 ( ) A、0 B、FmgC、Fmg D 、mgF【解析】由于两弹簧间的夹角均为0120,弹簧ab、对质点作用力的合力仍为 F , 弹簧ab、对质点有可能是拉力, 也有可能是推力, 因 F 与mg的大小关系不确定,故上述四个选项均有可能.正确答案 :ABCD 【答案】 ABCD 图 3-7-14 图 3-7-15 精选学习资料 - - - - - - - - - 名
27、师归纳总结 - - - - - - -第 6 页,共 8 页十、弹簧振子弹簧振子的位移、速度、加速度、动能和弹性势能之间存在着特殊关系,弹簧振子类问题通常就是考查这些关系,各物理量的周期性变化也是考查的重点. 【例 13】如图 3-7-16 所示,一轻弹簧与一物体组成弹簧振子,物体在同一竖直线上的AB、间做简谐运动,O 点为平衡位置; C 为 AO 的中点,已知OCh,弹簧振子周期为T , 某时刻弹簧振子恰好经过C 点并向上运动, 则从此时刻开始计时,下列说法中正确的是( ) A、4Tt时刻,振子回到C 点B、2Tt时间内,振子运动的路程为4hC、38Tt时刻,振子的振动位移为0D、38Tt时
28、刻,振子的振动速度方向向下【解析】振子在点AC、间的平均速度小于在点CO、间的平均速度,时间大于8T,选项AC、错误 ;经2T振子运动 O 点以下与点C 对称的位置, 总路程为4h,选项B正确 ; 经38Tt振子在点 OB、间向下运动,选项D正确 . 【答案】 B D 十一、弹簧串、并联组合弹簧串联或并联后劲度系数会发生变化,弹簧组合的劲度系数可以用公式计算,高中物理不要求用公式定量分析,但弹簧串并联的特点要掌握: 弹簧串联时, 每根弹簧的弹力相等;原长相同的弹簧并联时,每根弹簧的形变量相等. 【例 14】 如图 3-7-17 所示, 两个劲度系数分别为12kk、的轻弹簧竖直悬挂,下端用光滑细
29、绳连接,并有一光滑的轻滑轮放在细线上; 滑轮下端挂一重为G 的物体后滑轮下降,求滑轮静止后重物下降的距离. 【解析】两弹簧从形式上看似乎是并联,但因每根弹簧的弹力相等,故两弹簧实为串联; 两弹簧的弹力均2G,可得两弹簧的伸长量分别为112Gxk,222Gxk, 两 弹 簧 伸 长 量 之 和12xxx, 故 重 物 下 降 的 高 度为:1212()24G kkxhk k【答案】1212()4G kkk k十二、通电的弹簧【例 15】如图 3-7-18 所示装置中,将金属弹簧的上端固定,下端恰好浸入水银,水银与电源负极相连, 弹簧上端通过开关S与电源正极相连. 当接通开关S后,弹簧的运动情况如
30、何? 【解析】通电弹簧相邻两匝线圈相互平行且电流同向,两匝线圈相互吸引, 从而使弹簧收缩;弹簧收缩后下端离开水银,切断了电流吸引力消失,弹簧又向下恢复原长,与水银面接触而接通电路,然后又在吸引力作用下收缩 . 如此反复,弹簧就不断地上下振动. 图 3-7-17 图 3-7-18 图 3-7-16 图 3-7-19 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 8 页十三、物体沿弹簧螺旋运动【例 16】如图 3-7-19所示,长度为L 的光滑钢丝绕成高度为H 的弹簧,将弹簧竖直放置.一中间有孔的小球穿过钢丝并从弹簧的最高点A由静止释放,
31、 求经多长时间小球沿弹簧滑到最低点 B . 【解析】小球沿光滑弹簧下滑时机械能守恒,可以假想在不改变弹簧上各处倾角的条件下将弹簧拉成一条倾斜直线,如图3-7-20 所示,小球沿此直线下滑的时间与题中要求的时间相等 . 小球沿直线下滑的加速度为sinag由几何知识可得:sinHL; 由位移公式可知:212Lat ,联立上式解得:2tLgH【答案】2LgH十四、生产和生活中的弹簧弹簧在生产和生活中有着广泛的应用,近几年高考中也出现了不少有关弹簧应用方面的试题 . 【例 17】如图 3-7-21 所示表示某同学在科技活动中自制的电子秤原理,利用电压表示数来指示物体质量, 托盘与电阻可忽略的弹簧相连,
32、托盘与弹簧的质量均不计,滑动变阻器的滑动头与弹簧上端连接; 当托盘中没放物体且S闭合时,电压表示数为零. 设变阻器的总电阻为R、总长度为L ,电源电动势为E 、内阻为r,限流电阻阻值为0R,弹簧劲度系数为k,不计一切摩擦和其他阻力. (1) 推导出电压表示数xU与所称物体质量m的关系式 . (2) 由(1) 结果可知, 电压表示数与待测物体质量不成正比、不便于进行刻度. 为使电压表示数与待测物体质量成正比,请利用原有器材进行改进并完成电路原理图,推导出电压表示数xU与待测物体质量m的关系式 . 【解析】 (1) 设变阻器上端至滑动头的长度为x , 据题意得 :mgkx,xxRRL,0 xxxRUERRr解得 :0()xmgREUmgRkL Rr (2) 改进后的电路如图3-7-22 所示,则有:mgkx, xxRRL, 解得:0()xmgREUkL RRr【答案】(1)0()xmgREUmgRkL Rr(2)0()xmgREUkL RRr图 3-7-20 图 3-7-21 图 3-7-22 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 8 页