《2022年初中数学金版题典 .pdf》由会员分享,可在线阅读,更多相关《2022年初中数学金版题典 .pdf(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、优秀学习资料欢迎下载05 二次根式和无理式例 1、化简根式:146 5例 2、化简:3320 14 22014 2例 3、化简:72(15)(13)例 4、化简:2222222(1) 222aba ababab(a2b0)224211aaa例 5、化简:3381813333aaaaaa例 6、设5151的整数部分为x,小数部分为y,试求2212xxyy的值。例 7、计算下式:11111335572121kk例 8、已知33242224aa bba bm。求证:222333abm例 9、设312123nnaaaabbbb(1a,2a,na,1b,2b,nb都是正数) 。求证:1 12233123
2、123()()nnnna ba ba ba baaaabbbb例 10、对于aR,确定2211aaaa的所有可能的取值。13 一次函数和反比例函数例 1、已知12yyy,1y与x成正比例,2y与2x成反比例。 且1x时,2y;4x时,2y。求:(1)y与x之间的函数关系式,并指出自变量x的取值范围;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 20 页优秀学习资料欢迎下载(2)当14x时,求y的值。例 2、在平面直角坐标系里,设点A、B 的坐标分别是(1x,1y) , (2x,2y) 。证明: A,B的距离为221212()()ABx
3、xyy。例 3、 设是一个多项式函数, 对所有实数x,2x4x2xx, 求2x。例 4、函数32yxx,问:x取什么值的时候,y有最小值。例 5、在平面直角坐标系里,点A 的坐标是( 2,0) ,点 P 在函数3yx的图像上,原点是 O,设 OPA的面积为S ,点 P的坐标为(x,y) 。(1)求面积S关于x的函数关系式,以及x, S的取值范围。(2)若点 P到y轴的距离为2,求 OPA的面积。(3)若 OPA的面积是4,求点 P的坐标。例 6、已知一次函数的图像经过点(2,4 ) ,它与两坐标轴所围成的三角形的面积等于2,求这个一次函数的解析式。例 7、已知点A(-2,0 ),B(4,0 )
4、 ,点 P在直线122yx上,若 PAB是直角三角形,求点 P的坐标。例 8、双曲线kyx和直线2yx相交于两点A,B,双曲线kyx和直线10ymx相交于两点B,C,已知点A的纵坐标为4,求点 A 、B、C的坐标。例 9、求函数244xy的图像所围成的面积。19 平行四边形例 1、如图所示,平行四边形ABCD中, EF BD,EF 分别交 AB、AD 的延长线于E、F,交BC、CD于 G、 H。求证: EG=FH 。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 20 页优秀学习资料欢迎下载例 2、如图所示,平行四边形ABCD中, AE
5、BC,CF AD,DN=BM。求证: EF与 MN 互相平分。例 3、如图,在平行四边形ABCD中, ABE和 BCF都是等边三角形,求证:DEF是等边三角形。例 4、把 AOB绕顶点 O旋转 90,使顶点A变成1A,B 变成1B,求证:1OAB中1AB边上的中线,是1OA B中1AB边上的高线。例 5、如图所示 ,Rt ABC中, BAC=90 , ADBC于 D,BG平分 ABC ,EFBC且交 AC于 F。求证: AE=CF 。例 6、如图所示, 平行四边形ABCD中,AF平分 BAD 交 BC于 F,DEAF交 CB于 E, 求证:BE=CF 。例 7、如图所示,矩形ABCD中, F在
6、 CB延长线上, AE=EF , CF=CA ,求证: BE DE。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 20 页优秀学习资料欢迎下载例 8、如图所示,一边长为25 厘米的正方形纸片,AD 上有一点P,且 AP=6 6厘米,折这纸片使点 B 落在点 P上,求折痕EF的长。例 9、如图所示, ABC中,AB=BC 边上两点, M 、N为 BC边上两点, 且 BAM= CAN ,MN=AN ,求 MAC 的度数。例 10、P是正方形ABCD 内一点,且PA : PB :PC=1 :2:3 ,如图所示,求APB. 例 11、如图所示
7、, 平行四边形ABCD中,DE AB于 E,BM=MC=DC。求证:EMC=3BEM。例 12、如图所示,正方形ABCD中, E是 CD的中点, F 是 DA 的中点,连结BE与 CF,相交于 P。求证: AP=AB。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 20 页优秀学习资料欢迎下载例 13、如图所示,正方形ABCD中,在 AD 的延长线上取点E、F,使 DE=AD ,DF=BD ,连接BF分别交 CD、CE于 H、G。求证: GHD 是等腰三角形。例 14、 如图所示,平面上有两个边长相等的正方形ABCD和 ABCD, 且正
8、方形ABCD的顶点A在正方形ABCD的中心。求证:当正方形ABCD绕 A转动时,两个正方形的重合部分的面积是一个定值。例 15、 如图所示,矩形 ABCD中, CE BD 于 E, AF平分 BAD 交 EC延长线于 F。 求证:CA=CF 。20 梯形例 1、如图,梯形ABCD中, ADBC, B=40, C=50, E、M、F、 N 分别是 AB、BC、CD、DA的中点,且EF=a,MN=b,求证: BC=ab。例 2、如图所示,在直角三角形ABC中, E是斜边 AB 的中点, D 是 AC 的中点, DFEC交BC延长线于F。求证:四边形EBFD是等腰梯形。精选学习资料 - - - -
9、- - - - - 名师归纳总结 - - - - - - -第 5 页,共 20 页优秀学习资料欢迎下载例 3、如图,已知梯形ABCD中, ABCD,CD=4,BD=6,AB=8,ACBD,垂足为E ,求CAB的度数。例 4、如图所示,ABCD是梯形, ADBC, ADBC,AB=AC且 ABAC,BD=BC , AC、BD 交于 O。求 BCD的度数。例 5、如图, ABCD是矩形, ABDE是等腰梯形,BD=20,EA=10,求 AB的长。例 6、如图,梯形ABCD中, ABDC, A=90, AB=4,CD=3,BC=7,O 为 AD 边的中点,求 O 到 BC的距离。例 7、如图所示,
10、四边形ABCF中, ABDF, 1=2,AC=DF ,FC AD。(1)求证:四边形ADCF是等腰梯形;(2)若 ADC的周长为16 厘米, AF=3厘米, AC-FC=3厘米,求四边形ADCF 的周长。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 20 页优秀学习资料欢迎下载例 8、 如图所示, 直角梯形 ABCD 中,C=90 ,AD BC , AD+BC=AB , E是 CD的中点,若 AD=2,BC=8 ,求 ABE的面积。例 9、在等腰梯形ABCD 中, ABDC, ABC=90 , AC平分 DAB , E、F 分别是对角
11、线AC、BD的中点,且EF=a,试求梯形ABCD 的面积。例 10、如图, 等腰梯形ABCD中,CD AB ,对角线 AC ,BD相交于 O, ACD=60 ,点 S、P、Q分别是 OD 、OA 、 BC的中点。(1)求证: PQS是等边三角形;(2)若 AB=5 ,CD=3 ,求 PQS的面积。例 11、已知一个梯形的四条边分别是1、2、3、4,求此梯形的面积。例 12、如图所示,直角梯形ABCD 中, AB BC ,且 AB=BC=2AD ,PA=1 ,PB=2,PC=3 ,求梯形面积。21 中位线定理例 1、如图,已知四边形ABCD 中, AD BC ,若 DAB的角平分线AE交 CD于
12、 E,连结 BE ,且BE平分 ABC ,求证: AB=AD+BC 。例 2、如图所示,在ABC中, B=2C,AD BC ,垂足为 D,M是 BC的中点, AB=10厘米,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 20 页优秀学习资料欢迎下载求 MD的长。例 3、在 ABC中, AH BC于 H,D、E、F 分别是 BC 、CA 、AB的中点,如图所示,求证:DEF= HFE 。例 4、已知 ABC中,分别以AB 、AC为斜边作等腰直角三角形ABM和 CAN ,P是 BC的中点。求证: PM=PN 。例 5、如图所示,在ABC中
13、, ABC 、 ACB的平分线BE 、CF 相交于O ,AG BE于 G , AHCF于 H。(1)求证: GH BC ;(2)若 AB=9厘米, AC=14厘米, BC=18厘米,求GH 。例 6、已知 ABC中, AB=AC ,AD是高, CE是角平分线,EF BC于 F,GE CE交 CB的延长线于 G。求证: FD=14 CG。例 7、连接凸四边形一组对边中点的线段等于另一组对边和的一半,问:这个凸四边形是什么四边形?试证明你的结论。例 8、已知四边形ABCD 中, AD BC,E、F分别是 AB 、CD的中点。求证:EF1()2ADBC例 9、如图所示,已知ABC中, AD是角平分线
14、,BE=CF ,M 、N分别是 BC和 EF的中点。求证: MN AD 。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 20 页优秀学习资料欢迎下载例 10、如图,梯形ABCD 的面积为12,求此梯形四边的中点组成的四边形EFGH 的面积。22、相似三角形例 1、如图, P是 ABC内一点,满足APB= BPC= CPA,若 2 ABC= CAB+ ACB ,求证:2PBPAPC。例 2、证明直角三角形中的射线定理。如图所示,Rt ABC, ACB=90 , CD为 AB边上的高,则22ACADBCBD. 例 3、如图所示,平行四边形
15、ABCD的对角线交于O,OE交 BC于 E,交 AB 的延长线于F。若 AB=a, BC=b, BF=c,求 BE 。例 4、如图,梯形ABCD中,ADBC ,BD、AC交于 O 点,过 O 的直线分别交AB、CD于 E、F,且 EF BC,AD=a,BC=b(ab) ,求 EF 。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 20 页优秀学习资料欢迎下载例 5、如图,在ABC中, BE 、CF分别是 AC 、AB边上的中线,D是 BC边上的一点,过D作DP CF交 AB于 P点,作 DQ BE交 AC于 Q,PQ分别交 BE 、CF
16、于 R、S。求证:13RSPQ例 6、如图所示,平行四边形ABCD中, AC与 BD 交于 O 点, E为 AD 延长线上一点,OE交CD于 F,EO延长线交 AB 于 G。求证:2ABADDFDE例 7、已知 P为 ABC内任一点,连AP、BP 、CP并延长分别交对边于D、E、F,求证:(1)1PDPEPFADBECF(2)APPD,BPPE,CPPF三者至少有一个不大于2,也至少有一个不小于2. 例 8、 设 K是 ABC内任意一点, KAB 、 KBC 、 KCA的重心分别为D、 E、 F, 则:D E FA B CSS的值为()A.19 B.29 C.49 D.23例 9、如图,在 A
17、BC中,AM是 BC边上的中线。 AE平分 BAC ,BD AE的延长线于D,且交精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 20 页优秀学习资料欢迎下载AM延长线于F。求证: EFAB 。例 10、如图,等边ABC和等边111ABC中,点O即是 AC的中点,又是1A1C的中点。求A1A:B1B的值。例 11、如图所示,在ABC中, BAC=120 , AD平分 BAC交 BC于 D。求证:111ADABAC例 12、锐角 ABC中, AB AC ,CD 、BE分别是 AB 、AC边上的高, DE与 BC的延长线相交于T,过 D作
18、 BC的垂线交BE于 F,过 E作 BC的垂线交CD于 G 。证明: F、G、T 三点共线。例 13、如图所示, 面积为a bc的正方形DEFG内接于面积为1 的正三角形ABC ,其中a,b,c为整数,且b不能被任何质数的平方整除,则acb的值是多少?例 14、如图,PQR和 PQR是两个全等的正三角形,六边形 ABCDEF 的边长记为: AB=1a,BC=1b,CD=2a,DE=2b,EF=3a,FA=3b。求证:222222123123aaabbb精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 20 页优秀学习资料欢迎下载例 15
19、、如图所示,在正三角形ABC的边 BC上任取一点D,以 BD、CD为边分别向外作正三角形 BDE、正三角形CDF,设三个正三角形的中心分别为G、K、H,求证: GKH 也为正三角形。例 16、如图所示,P为 ABC内一点,过点P作线段 DE 、FG 、HI 分别平行于AB 、BC 、CA,且 DE=FG=HI=d,AB=510,BC=450 ,CA=425 ,求d。例 17、已知正七边形ABCDEFG中,a、b、c分别为最长对角线、最短对角线与边长。求证:111abc例18 、如 图 , 凸 四边 形ABCD中, BAD+ BCD=90 , 求证 :222()()ABCDADBCBDACAC精
20、选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 20 页优秀学习资料欢迎下载例 19、如图, ABC和 ABC中, A=A, B= B , C= C,且 ABC与ABC 反向相似,设A、 B、 C 到 BC 、CA 、AB的距离分别为l、m、n。求证:2ABClBCm CAnABS23、圆例 1、如图,四边形ABCD内接于 O ,点 O在四边形的内部,已知AOB+ DOC=180 ,试证:由点O向四边形的各边所作的垂线段的长度之和等于四边形周长的12。例 2、已知锐角 ABC的顶点A 到垂心H 的距离等于它的外接圆的半径,则A 的度数是
21、()A.30 B. 45 C. 60 D. 75例 3、如图,已知直角梯形ABCD 的四条边长分别为AB=2 ,BC=CD=10 ,AD=6 ,过 B、D两点作圆,与 BA的延长线交于点E,与 CB的延长线交于点F,则 BE-BF的值为多少?精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 13 页,共 20 页优秀学习资料欢迎下载例 4、如图, 正方形 ABCD 内接于 O,点 P在劣弧 AB上,连结 DP ,交 AC于点 Q ,若 QP=QO ,则QCQA的值为()A.2 3 1 B.2 3 C.32 D.32例 5、如图,在平行四边形ABCD中
22、,过A、B、 C 三点的圆交AD 于 E,且与 CD 相切,若AB=4,BE=5 ,则 ED的长为()A。3 B.4 C.154D. 165例 6、如图, AB是 O的直径, AB=d,过 A作 O的切线并在其上取一点 C,使 AC=AB ,连结 OC交 O于点 D,BD的延长线交AC于 E,求 AE的长。例 7、如图,在 ABC中, ABC=90 , O是 AB上一点,以O为圆心, OB为半径的圆与AB交于点 E,与 AC切于点 D,AD=2 , AE=1 。(1)求 AOD 和 BCD的面积。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 14
23、 页,共 20 页优秀学习资料欢迎下载(2)若 F是线段 BE上任一点, FG AG ,G是垂足,设线段CG和 OF的长分别是x和y,试写出y与x之间的关系式。 (不要求写出x的取值范围)例 8、如图所示,点P为 O 外一点,过点P作 O 的两条切线,切点分别为A、B。过点 A作 PB的平行线, 交 O 于点 C。连结 PC ,交 O 于点 E;连结 AE ,并延长 AE交 PB于点 K。求证: PE AC=CE KB 例 9、如图所示,过A点的圆截 ABC的 AB边于 E,截 AC边于 F,截 BC边于 P、Q,若 EFBC,AQ BC ,求证: AP过 ABC外接圆的圆心。例 10、如图所
24、示,在ABC中, H为垂心,点O为外心, BAC=60 ,求证: AH=AO 。例 11、如图,五个圆顺次相外切,并且都和直线1l、2l相切,如果已知最大圆半径是18,最小圆半径是8,试求正中间3O的半径。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 15 页,共 20 页优秀学习资料欢迎下载例 12、证明托勒密定理:圆内接四边形对边乘积的和等于对角线的乘积。例 13、已知 ACD是圆的割线,点B在圆上,且2ABACAD。求证: AB是圆的切线。例 14、如图所示, AD 、BC为过圆的直径AB的两个端点的弦,且BD与 AC相交于 E。求证:AC
25、 AE+BD BE=2AB。例 15、如图所示,点O 位凸五边形ABCDE内一点,且 1=2, 3= 4, 5=6, 7=8,求证: 9 与 10 相等或互补。例 16、 如图,凸四边形ABCD内有四个小圆, 每个圆都和四边形的两条边及另外两个圆相切。又知该四边形是一个圆外切四边形,求证:上述四个圆中至少有两个圆的半径是相等的。例 17、如图,已知ABC的内心为I, 直线 AI 交 BC于 Q,直线 BI 交 AC于 P,过 P、Q、C的圆也过内心,且PQ=1 ,则 PI 等于()A. 1 B.22 C. 33 D.12精选学习资料 - - - - - - - - - 名师归纳总结 - - -
26、 - - - -第 16 页,共 20 页优秀学习资料欢迎下载例 18、如图,四边形ABCD是圆内接正方形,E、F是劣弧 AB、BC的中点,弦DE交 AB、AC于 P、Q。弦 DF交 BC、AC于 S、R。求证: B、P、 Q、R、S五点共圆。例 19、如图,1O、2O外切于A,半径分别为1r和2r,PB、 PC分别为两圆的切线,B、C为切点,使得PB:PC=1r:2r,PA交2O于点 E。求证: PAB PEC 24、解三角形例 1、在 ABC中,若coscoscosabcABC,试判断此三角形的形状。例 2、已知四边形ABCD 中, A=60, CB AB,CD AD ,CB=2,CD=1
27、 。求 AC的长。例 3、在 ABC中,若422242242()0cabcaa bb,则 C等于多少?例 4、已知四边形ABCD 中, ABC=135 , BCD=120 , CD=6 ,AB=6,BC=53, 求 AD的长。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 17 页,共 20 页优秀学习资料欢迎下载例 5、如图, 设 A,B,C,D四点依次在直线L 上,P在直线 L 外,AB=a,BC=b,CD=c, APB=,BPC=, CPD= . 求证:sinsin()()sin()sin()acab bc例 6、已知 P是 ABC内的一点,
28、且PAB= PBC= PCA=, 如图所示,求证:cotcotcotcotCABABCACB例 7、如图, ABC的外接圆的直径AE交 BC于 D。求证:tantanADABCACBDE例 8、如图 ABC是锐角三角形,AB=c,BC=a,AC=b. 延长锐角 ABC的高 AD 、 BE 、CF分别交外接圆于P、Q、R。设垂心为H。如图所示。求证:abcabcHAHBHCHPHQHR精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 18 页,共 20 页优秀学习资料欢迎下载例 9、证明蝴蝶定理:如图所示,过O的弦 AB的中点 M引任意两弦CD和 EF
29、 ,连结 CF和ED分别交弦AB于 P 、Q。求证: PM=MQ。例 10、证明:斯德瓦尔特定理。如图所示,在ABC中, D是 BC上一点,则222ACBDABDCADBDDCBC例11 、 如 图 所 示 , D是 等 腰 ABC 底 边BC 的 延 长 线 上 任 意 一 点 , 求 证 :22BDDCADAC例 12、在梯形 ABCD中, ABDC.如图所示,设AB=a,BC=b,CD=c,DA=d,对角线 AC=e,BD=f,求证:22222efbdac精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 19 页,共 20 页优秀学习资料欢迎下载例 13、如图, B、C、D 三点分别在半径为1 的半圆周上,AE是直径, 设 AB=a,BC=b,CD=c,DE=d。求证:2222abcdabcbcd4. 例 14、如图,设P、Q是线段 BC上两定点,且有BP=CQ ,A为 BC外一点,当A运动到使BAP= CAQ 时, ABC是什么三角形?试证明你的结论。例 15、设、都是锐角,则sin()sincoscossin。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 20 页,共 20 页