2022年分式知识点总结及复习 .pdf

上传人:Che****ry 文档编号:25191749 上传时间:2022-07-10 格式:PDF 页数:9 大小:123.53KB
返回 下载 相关 举报
2022年分式知识点总结及复习 .pdf_第1页
第1页 / 共9页
2022年分式知识点总结及复习 .pdf_第2页
第2页 / 共9页
点击查看更多>>
资源描述

《2022年分式知识点总结及复习 .pdf》由会员分享,可在线阅读,更多相关《2022年分式知识点总结及复习 .pdf(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、名师总结优秀知识点分式知识点总结及章末复习知识点一:分式的定义一般地,如果A,B 表示两个整数,并且B 中含有字母,那么式子BA叫做分式, A 为分子, B 为分母。知识点二:与分式有关的条件分式有意义:分母不为0(0B)分式无意义:分母为0(0B)分式值为0:分子为0 且分母不为0(00BA)分式值为正或大于0:分子分母同号(00BA或00BA)分式值为负或小于0:分子分母异号(00BA或00BA)分式值为1:分子分母值相等(A=B )分式值为 - 1:分子分母值互为相反数(A+B=0 )经典例题1、代数式14x是()A . 单项式B. 多项式C. 分式D. 整式2、在2x,1()3xy,3

2、,5ax,24xy中,分式的个数为()A. 1 B. 2 C. 3 D. 4 3、总价 9 元的甲种糖果和总价是9 元的乙种糖果混合,混合后所得的糖果每千克比甲种糖果便宜1 元,比乙种糖果贵 0.5 元,设乙种糖果每千克x元,因此,甲种糖果每千克元,总价 9 元的甲种糖果的质量为千克 .4、当a是任何有理数时,下列式子中一定有意义的是()A.1aaB.21aaC.211aaD.211aa5、当1x时,分式11xx,122xx,211xx,311x中,有意义的是()A. B. C. D. 6、当1a时,分式211aa()A. 等于 0 B. 等于 1 C. 等于 1 D. 无意义7、使分式848

3、3xx的值为 0,则x等于() A.38B.12C.83D.128、若分式2212xxx的值为 0,则x的值是()A . 1 或 1 B. 1 C. 1 D. 2 9、当x时,分式11xx的值为正数 . 10、当x时,分式11xx的值为负数 .11、当x时,分式132xx的值为 1.12、分式1111x有意义的条件是 () A .0 xB.1x且0 xC.2x且0 xD.1x且2x精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 9 页名师总结优秀知识点13、如果分式33xx的值为 1,则x的值为() A.0 xB.3xC.0 x且3xD

4、.3x14、下列命题中,正确的有()A、B为两个整式,则式子AB叫分式;m为任何实数时,分式13mm有意义;分式2116x有意义的条件是4x;整式和分式统称为有理数. w ww.x kb1. comA. 1 个B .2 个C. 3 个D. 4 个15、在分式222xaxxx中a为常数,当x为何值时,该分式有意义?当x为何值时,该分式的值为0?知识点三:分式的基本性质分式的分子和分母同乘(或除以)一个不等于0 的整式,分式的值不变。字母表示:CBCABA,CBCABA,其中 A、 B、C 是整式, C0。拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即B

5、BABBAAA注意:在应用分式的基本性质时,要注意C0 这个限制条件和隐含条件B0。经典例题1、把分式aab的分子、分母都扩大2 倍,那么分式的值()A. 不变B. 扩大 2 倍C. 缩小 2 倍D.扩大 4 倍2、下列各式正确的是()A.11axabxbB.22yyxxC.nnamma, (0a)D.nnamma3、下列各式的变式不正确的是()A.2233yyB.66yyxxC.3344xxyyD.8833xxyy4、在括号内填上适当的数或式子:5()412axyaxy;2111()aa;()2mnn;226 (2)()3(2)nn mm.5、不改变分式的值,把分式0.010.20.5xyx

6、y的分子与分母中的系数化为整数.精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 9 页名师总结优秀知识点知识点四:分式的约分定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。步骤:把分式分子分母因式分解,然后约去分子与分母的公因。注意:分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。知识点四:最简分式的定义一个分式的分子与分母没有公因式时,叫做最简分式。经典例题1、 约分:222_20aba

7、b; 229_69xxx;32218_12a bcab c; 2()_4()pqqp.2、下列化简结果正确的是()A.222222xyyxzzB.220()()abab abC.63233x yxx yD.231mmaaa3、下列各式与分式aab的值相等的是()A.aabB.aabC.abaD.aba4、化简2293mmm的结果是()A、3mmB、3mmC、3mmD、mm3知识点五:分式的通分分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。分式的通分最主要的步骤是最简公分母的确定。最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,

8、这样的公分母叫做最简公分母。确定最简公分母的一般步骤: 取各分母系数的最小公倍数; 单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式; 相同字母(或含有字母的式子)的幂的因式取指数最大的。 保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取。注意:分式的分母为多项式时,一般应先因式分解。经典例题1、 分式223ca b,44ab c,252bac的最简公分母是 ()A.12abcB.12abcC.24224a b cD.24212a b c2、通分:222,693xyzaba bcabc;2216,211aaaa.知识点六分式的四则运算与分式的乘方分式的乘除法法则:分

9、式乘分式,用分子的积作为积的分子,分母的积作为积的分母。式子表示为:dbcadcba精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 9 页名师总结优秀知识点分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。式子表示为ccbdadbadcba分式的乘方:把分子、分母分别乘方。式子nnnbaba经典例题1、下列运算正确的是() A.62xxxB.0 xyxyC.1xyxyD.axabxb2、下列各式的计算结果错误的是()A.bnybnxamxamyB.bnybmyamxanxC.bnybmxamxanyD.()bnybmxamxan

10、y3、计算:3921()_243aabbba;222222221_()abaabba bababba4、计算:232()_3a bc; 232()()()_bacacb.5、下列运算正确的是()A.33328()39xxyyB.242622224()()xyxxxyxyyyC.211xxxD.22()(1)1xxxx6、计算:2223() () _abba;2222()()_3yxxy.7、计算:23231()()()_344xyxyyx. 8、化简3232()() ()_x yxzyzzyx.9、当2006x,2005y,则代数式4422222xyyxxxyyxy的值为 () A . 1 B

11、. 1 C. 4011 D. 4011 10、先化简,再求值:2322322432() ()1(1)(1)2xxxxxxxxxxx,其中13x.11、已知27xy,求分式2222322xxyyxxyy的值 .12、计算:222008420084200820082200848.精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 9 页名师总结优秀知识点13、已知0345xyz,那么223xyxyz的值为() A .12B. 2 C.12D. 2 14、已知230,3260,0 xyzxyzxyz,求2222222xyzxyz的值 .分式的加减

12、法则:同分母分式加减法:分母不变,把分子相加减。式子表示为cbacbca异分母分式加减法:先通分,化为同分母的分式,然后再加减。式子表示为bdbcaddcba整式与分式加减法:可以把整式当作一个整数,整式前面是负号,要加括号,看作是分母为1 的分式,再通分。分式的加、减、乘、除、乘方的混合运算的运算顺序先乘方、再乘除、后加减,同级运算中,谁在前先算谁,有括号的先算括号里面的,也要注意灵活,提高解题质量。注意:在运算过程中,要明确每一步变形的目的和依据,注意解题的格式要规范,不要随便跳步,以便查对有无错误或分析出错的原因。加减后得出的结果一定要化成最简分式(或整式)。知识点六整数指数幂引入负整数

13、、零指数幂后,指数的取值范围就推广到了全体实数,并且正正整数幂的法则对对负整数指数幂一样适用。即nmnmaaamnnmaannnbbaanmnmaaa(0a)nnbabanna1na(0a)10a(0a) (任何不等于零的数的零次幂都等于1)其中 m,n 均为整数。科学记数法若一个数x 是 0 x10 的数则可以表示为n10a(10a1,即 a的整数部分只有一位,n 为整数)的形式,n 的确定n=比整数部分的数位的个数少1。如 120 000 000=8101.2经典例题7 个 0 9 个数字精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,

14、共 9 页名师总结优秀知识点1、计算:1_11xxx;2221_2aba b.2、化简22142xxx的结果是() A .12xB.12xC.2324xxD.2324xx3、化简2()ababa ab的结果是()A .abaB.abaC.baaD.ab4、计算:3333xxxx;212211933aaa;2111111xxx.5、计算24()22aaaaaa的结果是() A. 4 B. 4 C.2aD.24a6、化简11()xxxx的结果是()A.11xB. 1 C.11xD. 1 7、计算:2114()22xxxx;22214()244xxxxxxxx;11xxx;211(1)(1)11xx

15、x;22213211143xxxxxxx.8、设,Axy Bxy,则ABABABAB等于()A.22xyxyB.222xyxyC.22xyxyD.222xyxy9、若2210aa,求22214()2442aaaaaaaa的值 .精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 9 页名师总结优秀知识点10、已知269aa与1b互为相反数,求()()ababba的值 .11、已知,a b为实数,且1ab,设11abMab,1111Nab,你能比较,M N的大小吗?12、阅读命题:计算:111.(1)(1)(2)(2)(3)x xxxxx解:

16、原式11111111223xxxxxx113.3(3)xxx x请仿照上题,计算123.(1)(1)(3)(3)(6)x xxxxx知识点七:分式方程的解的步骤去分母,把方程两边同乘以各分母的最简公分母。(产生增根的过程)解整式方程,得到整式方程的解。检验,把所得的整式方程的解代入最简公分母中:如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。产生增根的条件是:是得到的整式方程的解;代入最简公分母后值为0。知识点八列分式方程基本步骤审仔细审题,找出等量关系。设合理设未知数。列根据等量关系列出方程(组)。解解出方程(组) 。注意检验答答题。经典

17、例题1、已知方程2135xx;11033x;14532xx;42xx, 其中是分式方程的有()A. B. C. D. 2、分式方程22111xxx,去分母时两边同乘以,可化整式方程3、如果11x与11x互为相反数,则x的值为精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 9 页名师总结优秀知识点5、若关于x的方程1101axx有增根,则a的值为6、如果分式方程11xmxx无解,则m的值为7、当a为何值时,关于x的方程311xaxx无解?8、若关于x的分式方程322xxa有正数解,则实数a的取值范围是9、若24422xabxxx,试求22

18、ab的值 .10、解分式方程12311xx时小甲采用了以下的方法:解:设11yx,则原方程可化为23yy,解得1y即111x,去分母得11x,所以0 x检验:当0 x时,10 x,所以0 x是原方程的解上面的方法叫换元法,请用换元法解方程42236xxxx.11、已知2510 xx,求441xx的值 .12、某中学要购买一批校服,已知甲做5 件与乙做6 件的时间相等,两人每天共完成55 件,设甲每天完成x件,则下列方程不正确的是()A .5655xxB.5655xxC.5556xxD.65(55)xx13、某工地调来72 人参加挖土与运土,已知 3 人挖出的土1 人能恰好运走, 怎样分配才能使

19、挖出来的土能及时运走?设派x人挖土,其余运土,则可列方程为373xx;723xx;7213xx;372xx,其中所列方程正确的有()A. 1 个B. 2 个C. 3个D. 4 个精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 9 页名师总结优秀知识点14. 甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2 天后,再由两队合作10 天就能完成全部工程 已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天?15. 某超级市场销售一种计算器,每个售价48 元后来,计算器的进价降低了4% ,但售价未变,从而使超市销售这种计算器的利润提高了5%这种计算器原来每个进价是多少元?(利润售价进价,利润率100%利润进价)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 9 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁