《2014年高考新课标I卷数学(文)试题解析(精编版)(解析版).doc》由会员分享,可在线阅读,更多相关《2014年高考新课标I卷数学(文)试题解析(精编版)(解析版).doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、中小学教育() 教案学案课件试题全册打包2014年普通高等学校招生全国统一考试数学(文科)第卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则( )A. B. C. D. .考点:复数的运算4.已知双曲线的离心率为2,则A. 2 B. C. D. 16.设分别为的三边的中点,则A. B. C. D. 【答案】A【解析】试题分析:根据平面向量基本定理和向量的加减运算可得:在中,同理,则考点:向量的运算7.在函数, ,,中,最小正周期为的所有函数为A. B. C. D. 8.如图,网格纸的各小格都是正方形,粗实线
2、画出的事一个几何体的三视图,则这个几何体是( )A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱考点:三视图的考查9.执行右面的程序框图,若输入的分别为1,2,3,则输出的( )A. B. C. D.10.已知抛物线C:的焦点为,是C上一点,则( )A. 1 B. 2 C. 4 D. 8 考点:线性规划的应用12.已知函数,若存在唯一的零点,且,则的取值范围是 (B) (C) (D)第卷(共90分)二、填空题(每题4分,满分16分,将答案填在答题纸上)13.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为_.【答案】【解析】试题分析:根据题意显然这是一个古典概型,其基
3、本事件有:数1,数2,语; 数1,语,数2;数2,数1,语; 数2,语,数1;语,数2,数1; 语,数1,数2共有6种,其中2本数学书相邻的有4种,则其概率为:考点:古典概率的计算14.甲、乙、丙三位同学被问到是否去过、三个城市时, 甲说:我去过的城市比乙多,但没去过城市; 乙说:我没去过城市; 丙说:我们三人去过同一城市; 由此可判断乙去过的城市为_.【答案】A【解析】试题分析:根据题意可将三人可能去过哪些城市的情况列表如下:A城市B城市C城市甲去过没去去过乙去过没去没去丙去过可能可能可以得出结论乙去过的城市为:A考点:命题的逻辑分析15.设函数则使得成立的的取值范围是_.【答案】【解析】试
4、题分析:由于题中所给是一个分段函数,则当时,由,可解得:,则此时:;当时,由,可解得:,则此时:,综合上述两种情况可得:考点:1.分段函数;2.解不等式16.如图,为测量山高,选择和另一座山的山顶为测量观测点.从点测得 点的仰角,点的仰角以及;从点测得.已知山高,则山高_.【答案】150【解析】试题分析:根据题意,在中,已知,易得:;在中,已知,易得:,由正弦定理可解得:,即:;在中,已知,易得:.考点:1.空间几何体;2.仰角的理解;3.解三角形的运用三、解答题 (本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.) 17.已知是递增的等差数列,是方程的根。(I)求的通项公式
5、;(II)求数列的前项和.18.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值分组75,85)85,95)95,105)105,115)115,125)频数62638228(I)在答题卡上作出这些数据的频率分布直方图:(II)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?.质量指标值的样本方差为.所以这种产品质量指标值(3)质量指标值不低于95的产品所占比例的估计值为,由于该估计
6、值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.考点:1.频率分布表;2.频率分布直方图;3.平均数与方差的计算19.如图,三棱柱中,侧面为菱形,的中点为,且平面.(1) 证明:(2) 若,求三棱柱的高.(2)作,垂足为D,连结AD,作,垂足为H.20.已知点,圆:,过点的动直线与圆交于两点,线段的中点为,为坐标原点.(1) 求的轨迹方程;(2) 当时,求的方程及的面积由题设知,故,即.由于点P在圆C的内部,所以M的轨迹方程是.(2)由(1)可知M的轨迹是以点为圆心,为半径的圆.由于,故O在线段PM的垂直平分线上,又P在圆N上,从而.
7、因为ON的斜率为3,所以的斜率为,故的方程为.又,O到的距离为,所以的面积为.考点:1.曲线方程的求法;2.圆的方程与几何性质;3.直线与圆的位置关系21.设函数,曲线处的切线斜率为0(1) 求b;(2) 若存在使得,求a的取值范围。请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分,解答时请写清题号.选修4-1,几何证明选讲22.如图,四边形是的内接四边形,的延长线与的延长线交于点,且.(I)证明:;(II)设不是的直径,的中点为,且,证明:为等边三角形.【答案】(1)详见解析;(2)详见解析选修4-4:坐标系与参数方程22.已知曲线,直线(为参数)(1) 写出曲线的参数方程,直线的普通方程;(2) 过曲线上任意一点作与夹角为30的直线,交于点,求的最大值与最小值.【答案】(1)曲线C的参数方程为,(为参数),直线的普通方程为.(2)曲线C上任意一点到的距离为.则,其中为锐角,且,当时,取得最大值,最大值为.当时,取得最小值,最小值为.考点:1.椭圆的参数方程;2.直线的参数方程;3.三三角函数的有界性(24) 选修4-5;不等式选讲22.若且(I)求的最小值;(II)是否存在,使得?并说明理由.