《2022年热力学与统计物理复习总结级相关试题电子科大 .pdf》由会员分享,可在线阅读,更多相关《2022年热力学与统计物理复习总结级相关试题电子科大 .pdf(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、学习必备欢迎下载热力学与统计物理考试大纲第一章热力学的基本定律基本概念:平衡态、热力学参量、热平衡定律温度,三个实验系数(,T)转换关系,物态方程、功及其计算,热力学第一定律(数学表述式)热容量(C,CV,Cp的概念及定义),理想气体的内能,焦耳定律,绝热过程及特性,热力学第二定律(文字表述、数学表述),可逆过程克劳修斯不等式,热力学基本微分方程表述式,理想气体的熵、熵增加原理及应用。综合计算:利用实验系数的任意二个求物态方程,熵增(S)的计算。第二章均匀物质的热力学性质基本概念:焓( H) ,自由能 F,吉布斯函数 G 的定义,全微公式,麦克斯韦关系(四个)及应用、能态公式、焓态公式,节流过
2、程的物理性质,焦汤系数定义及热容量( Cp)的关系,绝热膨胀过程及性质,特性函数F、G,空窖辐射场的物态方程,内能、熵,吉布函数的性质。综合运用: 重要热力学关系式的证明,由特性函数 F、G 求其它热力学函数 (如S、U、物态方程)第三章、第四章单元及多元系的相变理论该两章主要是掌握物理基本概念:热动平衡判据( S、F、G 判据) ,单元复相系的平衡条件,多元复相系的平衡条件,多元系的热力学函数及热力学方程,一级相变的特点,吉布斯相律,单相化学反应的化学平衡条件,热力学第三定律标准表述,绝对熵的概念。统计物理部分第六章近独立粒子的最概然分布基本概念:能级的简并度,空间,运动状态,代表点,三维自
3、由粒子的空间,德布罗意关系(kP,) ,相格,量子态数。等概率原理,对应于某种分布的玻尔兹曼系统、玻色系统、费米系统的微观态数 的计 算 公 式 , 最 概 然 分 布 , 玻 尔 兹 曼 分 布 律 (lllea) 配 分 函数(sllsleeZ1) ,用配分函数表示的玻尔兹曼分布(llleZNa1) ,fs,Pl,Ps的概念,经典配分函数(duehZlr011)麦态斯韦速度分布律。综合运用:能计算在体积V 内,在动量范围 PP+dP内,或能量范围 +d内,粒子的量子态数;了解运用最可几方法推导三种分布。第七章玻尔兹曼统计基本概念:熟悉U、广义力、物态方程、熵S 的统计公式,乘子 、的意义,
4、玻尔兹曼关系( SKln ) ,最可几率Vm,平均速度 V ,方均根速度sV,能量均分定理。综合运用:能运用玻尔兹曼经典分布计算理想气体的配分函数内能、物态方程和熵;能运用玻尔兹曼分布计算谐振子系统(已知能量(n+21)的配分函数内能和热容量。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 12 页学习必备欢迎下载第八章玻色统计和费米统计基本概念:光 子 气 体 的 玻 色 分 布 , 分 布 在 能 量 为 s的 量 子 态s 的 平 均 光 子 数(11KTsef) ,T0k 时,自由电子的费米分布性质(fs=1) ,费米能量(0)
5、 ,费米动量 PF,T0k 时电子的平均能量,维恩位移定律。综合运用: 掌握普朗克公式的推导;T0k 时,电子气体的费米能量(0)计算,T=0k 时,电子的平均速率V 的计算,电子的平均能量的计算。第九章系综理论基本概念:空间的概念,微正则分布的经典表达式、量子表达式,正则分布的表达式,正则配分函数的表达式。经典正则配分函数。不作综合运用要求。四、考试题型与分值分配1、题型采用判断题、 单选题、填空题、名词解释、 证明题及计算题等六种形式。2、判断题、单选题占24,名词解释及填空题占24,证明题占 10,计算题占 42。热力学与统计物理复习资料一、单选题1、彼此处于热平衡的两个物体必存在一个共
6、同的物理量,这个物理量就是()态函数内能温度熵2、热力学第一定律的数学表达式可写为()WQUUABWQUUBAWQUUABWQUUBA3、在气体的节流过程中,焦汤系数=)(1TCVP,若体账系数T1,则气体经节流过程后将()温度升高温度下降温度不变压强降低4、空窖辐射的能量密度u 与温度 T 的关系是()3aTuTaVu34aVTu4aTu5、熵增加原理只适用于()闭合系统孤立系统均匀系统开放系统6、在等温等容的条件下,系统中发生的不可逆过程,包括趋向平衡的过程,总是朝着()G减少的方向进行F 减少的方向进行G增加的方向进行F 增加的方向进行7、从微观的角度看,气体的内能是()气体中分子无规运
7、动能量的总和气体中分子动能和分子间相互作用势能的总和气体中分子内部运动的能量总和气体中分子无规运动能量总和的统计平均值8、若三元 相系的自由度为2,则由吉布斯相律可知,该系统的相数是()精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 12 页学习必备欢迎下载3 2 1 0 9、根据热力学第二定律可以证明,对任意循环过程L,均有LT0LT0LT0LST10、理想气体的某过程服从PVr常数,此过程必定是()等温过程等压过程绝热过程多方过程11、卡诺循环过程是由()两个等温过程和两个绝热过程组成两个等压过程和两个绝热过程组成两个等容过程和两个
8、绝热过程组成两个等温过程和两个绝热过程组成12、下列过程中为可逆过程的是()准静态过程气体绝热自由膨胀过程无摩擦的准静态过程热传导过程13、理想气体在节流过程前后将()压强不变压强降低温度不变温度降低14、气体在经准静态绝热过程后将()保持温度不变保持压强不变保持焓不变保持熵不变15、熵判据是基本的平衡判据,它只适用于()孤立系统闭合系统绝热系统均匀系统16、描述 N 个三维自由粒子的力学运动状态的空间是 ( ) 6 维空间3 维空间6N 维空间3N 维空间17、服从玻尔兹曼分布的系统的一个粒子处于能量为l的概率是()leZPl11leZPll1leNPl1leZPl1118、T0k 时电子的
9、动量 PF称为费米动量,它是T0K 时电子的()平均动量最大动量最小动量总动量19、光子气体处于平衡态时,分布在能量为s的量子态 s 的平均光子数为()11se11KTe11se11KTe20、由 N 个单原子分子构成的理想气体,系统的一个微观状态在空间占据的相体积是()Nh3Nh63h6h21、 服从玻耳兹曼分布的系统的一个粒子处于能量为s的量子态 S 的概率是()seNPs1sePsseNPs1sePs22、在 T0K 时,由于泡利不相容原理限制,金属中自由电子从能量0 状态起依次填充之(0) 为止,(0) 称为费米能量,它是0K时电子的()最小能量最大能量平均能量内能23、平衡态下,温度
10、为T 时,分布在能量为 s的量子态 s 的平均电子数是()精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 12 页学习必备欢迎下载11KTusef11KTsef11KTusef11KTusef24、描述 N 个自由度为 1 的一维线性谐振子运动状态的空间是()1 维空间2 维空间N 维空间2N 维空间25、玻色分布和费米分布都过渡到玻耳兹曼分布的条件(非简并性条件)是()1e1e1e1e26、由 N 个自由度为 1 的一维线性谐振子构成的系统,谐振子的一个运动状态在空间占据的相体积是()h h2hNh2N27、由 N 个自由度为 1 的
11、一维线性谐振子构成的系统,其系统的一个微观状态在空间占据的相体积是()h h2hNh2N28、由两个粒子构成的费米系统,单粒子状态数为3 个,则系统的微观状态数为()3 个6 个9 个12 个29、由两个玻色子构成的系统,粒子的个体量子态有3 个,则玻色系统的微观状态数为()3 个6 个9 个12 个30、微正则分布的量子表达式可写为()esess1s二、判断题1、 无摩擦的准静态过程有一个重要的性质,即外界在准静态过程中对系统的作用力,可以用描写系统平衡状态的参量表达出来。()2、在 P-V 图上,绝热线比等温线陡些,是因为r=1VPCC。 ()3、理想气体放热并对外作功而压强增加的过程是不
12、可能的。()4、功变热的过程是不可逆过程,这说明热要全部变为功是不可能的。()5、绝热过程方程对准静态过程和非准表态过程都适用。()6、在等温等容过程中,若系统只有体积变化功,则系统的自由能永不增加。()7、多元复相系的总焓等于各相的焓之和。()8、当孤立系统达到平衡态时,其熵必定达到极大值。()9、固相、液相、气相之间发生一级相变时,有相变潜热产生,有比容突变。10、膜平衡时,两相的压强必定相等。()11、粒子和波动二象性的一个重要结果是微观粒子不可能同时具有确定的动量和坐标。 ()12、构成玻耳兹曼系统的粒子是可分辨的全同近独立粒子。()13、具有完全相同属性的同类粒子是近独立粒子。()1
13、4、 玻色系统的粒子是不可分辨的,且每一个体量子态最多能容纳一个粒子。 ()15、定域系统的粒子可以分辨,且遵从玻耳兹曼分布。()16、热量是热现象中特有的宏观量,它没有相应的微观量。()精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 12 页学习必备欢迎下载17、玻尔兹曼关系S=Kln只适用于平衡态。 ()18、T=0k 时,金属中电子气体将产生巨大的简并压,它是泡利不相容原理及电子气的高密度所致。()三、填空题1、孤立系统的熵增加原理可用公式表示为() 。2、一孤立的单元两相系,若用指标、表示两相,则系统平衡时,其相变平衡条件可表示
14、为() 。3、 吉布斯相律可表示为f=k+z- , 则对于二元系来说, 最多有()相平衡。4 、 热 力 学 系 统由 初 始 状 态 过 渡 到 平 衡 态 所 需 的 时 间 称 为() 。5、热力学第二定律告诉我们,自然界中与现象有关的实际过程都是() 。6、热力学第二定律的普遍数学表达式为() 。7、克拉珀珑方程vTLdTdP中,L 的意义表示1mol 物质在温度不变时由相转变到相时所吸收的() 。8、在一般情况下,整个多元复相系不存在总的焓,仅当各相的()相同时,总的焓才有意义。9 、 如 果 某 一 热 力 学 系 统 与 外 界 有 物 质 和 能 量 的 交 换 , 则 该 系
15、 统 称 为() 。10、热力学基本微分方程dU=( )。11、单元系开系的热力学微分方程dU=( )。12、单相化学反应的化学平衡条件可表示为() 。13、在 s、v 不变的情形下,平衡态的()最小。14、在 T、V 不变的情形下,可以利用()作为平衡判据。15、设气体的物态方程为PV=RT,则它的体胀系数() 。16、当 T0 时,物质的体胀系数() 。17、当 T0 时,物质的 CV() 。18、单元系相图中的曲线称为() ,其中汽化曲线的终点称为() 。19、能量均分定理告诉我们,对处在温度为T 的平衡态的经典系统,粒子能量中每一个平方项的平均值都等于() 。20 、 平 衡 态 下
16、, 光 子 气 体 的 化 学 势 为 零 , 这 是 与 系 统 中 的 光 子 数()相联系的。21、平衡态统计物理的一个基本假设是() 。22、空窖内的辐射场可看作光子气体,则光子气体的能量和圆频率 遵循的德布罗意关系为() 。23、若系统由 N 个独立线性谐振子构成,则系统配分函数Z 与粒子配分函数Z1的关系为() 。24、用正则分布求热力学量实质上相当于选取()作为特性函数。25、由 N 个单原子分子构成的理想气体,粒子配分函数Z1与系统正则配分数Z 的关系为() 。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 12 页学习
17、必备欢迎下载26、T0k 时,电子气体的总能量U)0(53N,式中 N 为电子数,)0(为费米能,则一个电子的平均能量为() 。27、已知 T0k 时,自由电子气体的化学势3222)3(2)0(VNm,则电子的费米功量 P(0)() 。28、等概率原理的量子表达式为() 。29、用微正则分布求热力学量实质上相当于选取()作为特性函数。30、 由 麦 克 斯 韦 速 度 分 布 律 可 知 , 如 果 把 分 子 速 率 分 为 相 等 的 间 隔 , 则()速率所在的间隔分子数最多。四、名词解释1、热力学平衡态2、驰豫时间3、广延量4、强度量5、准静态过程6、可逆过程7、绝热过程8、节流过程9
18、、特性函数10、熵增加原理11、等概率原理12、空间13、态密度14、粒子全同性原理15、最概然速率16、能量均分定理17、玻耳兹曼分布18、玻色分布19、费米分布20、空间五、证明题1、证明热力学关系式1VVUTPTPCVT2、)(为体胀系数式中TVCVSPP3、证明热力学关系式为压力系数)(式中VSCTPVT4、证明热力学关系式为体胀系数)为压缩系数,(式中TTVPT5、证明热力学关系式SVTVTPU6、对某种气体测量得到6VRTPV,23)(2bVRTVaVPT,式中R,a,b为常数,试证该气体的物态,方程为范德瓦斯方程。7、证明热力学关系TVPSVPCCVP。8、证明PPSTVCTPT
19、,并说明其物理意义。9、证明dVTPTdTCTdsVV精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 12 页学习必备欢迎下载10、证明VVUUPTUTPVT六、计算题:1、已知某气体的体胀系数T1,等温压缩系数PKT1,试求该气体的物态方程。2、已知某热力学系统的特性函数F431avT,式中为常数。试求该系统的熵s和物态方程。3、实验测得 1mol 气体的体胀系数和压强系数分别为TPVR1,,试求该气体的物态方程。4、一体积为 2V 的容器,被密闭的隔为等大的两部分A 和 B,开始时, A 中装有单原子理想气体,其温度为T,而 B 为
20、真空。若突然抽掉隔板,让气体迅速膨胀充满整个容器,求系统的熵变。5、对某固体进行测量, 共体胀系数及等温压缩系数分别为VbTVbPaTT,2,式中 a,b为常数,试求该固体的物态方程。6、 实验测得某气体的体胀系数和等温压缩系数分别为VaPPVnRT1,, 式中 n,R,a 均为常数。试求该气体的物态方程。7、已知某表面系统的特性函数FA,式中为表面张力系数,且)(T,A为表面积。试用特性函数法求该系统的熵。8、已知 1mol 范德瓦耳斯气体的物态方程为2vabvRTP,试求气体从体积v1等温膨胀到 v2时的熵变 s。9、有两个体积相同的容器,分别装有1mol 同种理想气体,令其进行热接触。若
21、气体的初温分别为300k 和 400k,在接触时保持各自的体积不变,且已知摩尔热容量CV=R,试求最后的温度和总熵的变化。10、已知某系统的内能和物态方程分别为UPVbVTU31,4,其中 b 为常数。设0K 时的熵 S0=0,试求系统的熵。11、设压强不太高时,1mol 真实气体的物态方程可表示为PV=RT(1+BP),其中R为常数, B 为温度的函数,求气体的体胀系数和等温压缩系数T。12、对某气体测量得到如下结果:)(2PTfPVTaPRTVTP,式中 ,R 为常数, f(P)只是 P 的函数。试求( 1)f(P)的表达式。(2)气体的物态方程。13、已知水的比热为4.18J/g.c,有
22、 1kg 0的水与 100的恒温热源接触,当水温达到 100时,水的熵改变了多少?热源的熵改变了多少?水与热源的总熵改变了多少?14、设高温热源 T1与低温热源 T2与外界绝热。若热量Q 从高温热源 T1传到低温热源 T2,试求其熵度。并判断过程的可递性。15、1mol 范德瓦斯气体从V1等温膨胀至 V2,试求气体内能的改变U。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 12 页学习必备欢迎下载16、已知理想气体的摩尔自由能f=(CVS0)TCVTlnTRTlnV+f0,试求该气体的摩尔熵。17、试由玻耳兹曼分布求单原子理想气体的物
23、态方程和内能。(积分公式:aeax2)18、试求 T0k 时,金属中自由电子气体的费米能量(0) 。19、若固体中原子的热运动可看作是3N 个独立的线性谐振子的振动,振子的能量,2, 1 ,0,21nhvn)(。试用玻耳兹曼分布求振子的配分函数Z1和固体的内能 U。20、试由玻耳兹曼分布推导热力学系统内能U 的统计表达式1ln ZNu。21、由 N 个经典线性谐振子组成的系统,其振子的能量222121bqap,式中 a,b 为常数,试求振子的振动配函数Z1(积分式dxex2)22、空窖辐射看作由光子气体构成。已知光子气体的动量与能量的关系为cp,式中为圆频率, c 为光速。试求在体积V 的空窖
24、内,在到+d的圆频率范围内,光子的量子态数为多少?23、设空窖辐射场光子气体的能量cp,试求温度为 T,体积为 V 的空窖内,圆频率在d到范围内的平均光子数。24、对于金属中的自由电子气体,已知电子的能量mp22,试求在体积 V 内,能量在d到范围内电子的量子态数。25、设双原子分子的转动惯量为I,转动动能表达式)sin(21222QPPI,试求双原子分子的转动配分函数。26、假充电子在二维平面上运动,密度为n,试求 T=0K 时二维电子气体的费米能量(0) 。27、气 柱 的 高度 为H , 截 面 积 为 S, 处 于 重 力 场 中 , 并 设 气 柱 分 子 能 量mgzPPPmzyx
25、)(21222,试由玻耳兹曼分布求气柱分子的配分函数Z1和内能U(积分公式:adxeax2)28、服从玻耳兹曼分布的某理想气体,粒子的能量与动量关系为cp,式中 c 为光速。气体占据的体积设为V,试求粒子的配分函数。29、试求温度为 T,体积为 V 的空窖内,圆频率在d到范围内的平均光子数及辐射场内能按频率分布的规律。30、对于金属中自由电子气体,电子的能量mp22,试求在体积V 内, T=0K 时系精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 12 页学习必备欢迎下载统的总电子数。部分参考答案一、单选题17、 19 、 21 、 2
26、3 、 28 、 29 、二、证明题1、利用 T、V、U 构成的链式关系1VTUTUUVVT及能态公式PTPTUVVT即可证明。10、选取 U=U(T ,V)以PVSTVUTT代入下式UTVUVTTU=VTUTPVST且VTTPVS代入即得六、计算题2、334aVTTFSV431aTTFPT3、选取 TT(P,V)可求微分得VdVpdPdT将、代入再改写为dPPRTdTPRdV2凑成全微分后积分可得PRTV6、选取 V=V(T,P) 微分得dPdTVdVT以,T代入积分: PV=nRT-Cap221确定 C=0 PV=nRT-221ap8、dVTPdTTCSVTTVVV21dVTPVVV21以
27、范氏气体方程代入求偏导数再积分即得bvbvRS12ln10、由题中已知条件代入热力学基本微分方程TPdVdUdS然后积分可得VbTS33412、(1) 选取 V=V(T , P)得 dV=dPPTfdTTaPR)(2由全微分条件可得2)(PRPf(2)将 f(P)代入 dV 式 dV=22TadTPTdPPdTR积分并由物理边界条件确定积分常数精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 12 页学习必备欢迎下载V=TaPRT15、dVTPTPdTCUVV以范氏气体方程代入211111VVaVadVUVV16、0lnlnSVRTCTf
28、SVV17、配分函数)(2312221zyxPPPmehZdxdydzdpxdpydpz23212hmVZ20、)(.11llllllllllllleZNezNaPNU111ln ZNZZN21、TabhkabhdqdpehZbqapv2121)2121(12223、光的0KT在体积 V 的空窖内, 在动量 P 至 P+dP范围内光子的量子态数为2324hdPVP(考虑自旋)将cP代入得体积 V 内,在圆频率d范围内光子的量子态数dCV232以11KTsef代入 得体积 V 的空窖内,圆频率在d范围内的平均光子数为1232KTedCV24、dmhVdDmphdpVppdPD21233232)2
29、(428)()(代入得以25、见教材 P275 26、动量在yyyxxxdPPPdPPP至至,范围内电子的量子态数22,hdPSdPdPdPPPDyxyxyx)(1)P d PPPPdPdPyxyx2),(),((2)精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 12 页学习必备欢迎下载又mP22(3)mdhsdD24)((4)T0K 时,)0(0)0(1sf)0(44)(2)0(02hsmdhsmdDfNs)(4)0(2SNnmnh式中27、)1 ()2(12330)(2131222KTmgHzyxHPPPmKTemgKTmKTh
30、sdPdPdPedzdxdyhZzyx12ln01KTmgHeNmgHNKTUZNU28、02302331441dpephVdppehVpydpzdxdydzdpxdehZpcpcpc3333333818TchVKchV30、3228)(hdPPVpdPD代入mP22dmhVdD2123324)()()0(0)0(1sf23232)0(0)0()2(38)(hmVdDfNs热力学与统计物理二00 四年七月全真试题(仅供参考)一、判断题(下列各题,你认为正确的,请在题干的括号内打 “” , 错的打“” 。每题 2 分,共 20 分)1、在等温等压条件下, 若系统只有体积变化功, 则系统的吉布期函
31、数永不增加。()2、气体的节流过程是等焓过程。 ()3、系统的体积是强度量,系统的压强是广延量。()4、根据吉布斯相律,二元四相系的自由度f4。 ()5、单元复相系达到平衡时,各相的温度、压强和化学势必须分别相等。()6、所有工作于两个一定温度之间的可逆热机,其效率不相等。()精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 12 页学习必备欢迎下载7、两条绝热线不能相交。 ()8、 对于处在平衡态的孤立系统, 微观状态数最多的分布出现的概率最大。 ()9、具有完全相同属性的同类粒子是近独立粒子。()10、顺磁性固体是由定域、近独立的磁
32、性离子组成的系统,遵从玻耳兹曼分布。()二、填空题(每题2 分,共 20 分)1、如果某一热力学系统与外界有物质和能量的交换,则该系统称为 () 。2、热力学第二定律的开尔文表述是: () 。3、热力学基本方程du=() 。4、对热力学系统而言,麦氏关系TPS() 。5、克拉珀龙方程)(vvTLdTdp中 L 表示() 。6、系统的熵 S 与微观状态数 之间的玻耳兹曼关系式是() 。7、玻色(费米)分布可以过渡到玻耳兹曼分布的经典极限(非简并条件)为() 。8、 根据麦克斯韦速度分布律, 理想气体的方均根速率Vs=( )。9、对于处在温度为T 的平衡状态的经典系统,粒子能量中每一个平方项的平均
33、值等于() 。10、设有两个全同的玻色子,占据三个不同的个体量子态,则该系统最多有()个不同的微观状态。三、名词解释题(每题5 分,共 20 分)1、熵增加原理2、不可逆过程3、等概率原理4、玻色分布四、计算题(每题10 分,共 40 分)1、某一热力学系统的体胀系数T1,等温压缩系数pKT1,求此热力学系统的物态方程。2、理想气体初态温度为T,体积为 VA,经绝热自由膨胀过程体积膨胀为VB,求气体的熵变。3、求由 N 个原子构成的爱因斯坦固体的内能。(可能用到的公式: 1+x+x2+xn=x11,(1x))4、某种样品中的电子服从费米分布,其态密度有如下特征:0 时,D()0;0 时,D()D0,电子总数为 N,试求 T0k 时的化学势 0,总能量 U0。精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 12 页