20080507高一数学(13-2三角函数的诱导公式).ppt

上传人:仙*** 文档编号:24811403 上传时间:2022-07-07 格式:PPT 页数:17 大小:164KB
返回 下载 相关 举报
20080507高一数学(13-2三角函数的诱导公式).ppt_第1页
第1页 / 共17页
20080507高一数学(13-2三角函数的诱导公式).ppt_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《20080507高一数学(13-2三角函数的诱导公式).ppt》由会员分享,可在线阅读,更多相关《20080507高一数学(13-2三角函数的诱导公式).ppt(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、1.3 1.3 三角函数的诱导公式三角函数的诱导公式第二课时第二课时问题提出问题提出1.1.诱导公式一、二、三、四分别反映了诱导公式一、二、三、四分别反映了2k+2k+(kZkZ)、)、 与与的三角函数之间的关系,这的三角函数之间的关系,这四组公式的共同特点是什么?四组公式的共同特点是什么?cosxcosx函数同名,象限定号函数同名,象限定号. . 2.2.对形如对形如、的角的三角函的角的三角函数可以转化为数可以转化为角的三角函数,对形角的三角函数,对形如如 、 的角的三角函数与的角的三角函数与角角的三角函数,是否也存在着某种关系,的三角函数,是否也存在着某种关系,需要我们作进一步的探究需要我

2、们作进一步的探究. .22pa+思考思考1 1:sinsin(90906060)与)与sin60sin60的值相等吗?相反吗?的值相等吗?相反吗?思考思考2 2:sinsin(90906060) )与与cos60cos60,coscos(90906060)与)与sin60sin60的值分别的值分别有什么关系?据此,你有什么猜想?有什么关系?据此,你有什么猜想?2cos)2(sin知识探究(一):知识探究(一): 的诱导公式的诱导公式 2cos)2(sincos()si n2paa-=cos)2(sin思考思考3 3:如果如果为锐角,你有什么办法证为锐角,你有什么办法证明明 , ?cos()si

3、 n2paa-=a ab bc c2pa-si n()cos2bcpaa-=cos()si n2acpaa-=思考思考5 5:点点P P1 1(x x,y y)关于直线)关于直线y=xy=x对称对称的点的点P P2 2的坐标如何?的坐标如何?思考思考4 4:若若为一个任意给定的角,那么为一个任意给定的角,那么 的终边与角的终边与角的终边有什么对称关的终边有什么对称关系?系?2的终边的终边Oxy的终边的终边2思考思考6 6:设角设角的终边与单位圆的交点的终边与单位圆的交点为为P P1 1(x x,y y),则),则 的终边与单的终边与单位圆的交点为位圆的交点为P P2 2(y y,x x),根据

4、三角函),根据三角函数的定义,你能获得哪些结论?数的定义,你能获得哪些结论?2的终边的终边P P1 1(x(x,y)y)Oxy的终边的终边2P P2 2(y(y,x)x) 公式五:公式五: sin)2cos(cos)2sin(思考思考1 1:sinsin(90906060)与)与cos60cos60,coscos(90906060)与)与sin60sin60的值分别的值分别有什么关系?据此,你有什么猜想?有什么关系?据此,你有什么猜想?知识探究(二):知识探究(二): 的诱导公式的诱导公式 2sin)2cos(cos)2sin(思考思考3 3:根据相关诱导公式推导,根据相关诱导公式推导, ,

5、分别等于什么?分别等于什么?)2sin()2cos( 公式六:公式六: sin)2cos(cos)2sin(思考思考2 2: 与与 有什么内在联系?有什么内在联系?22)2(2思考思考4 4: 与与 有什么关系?有什么关系?)2tan(tan思考思考5 5:根据相关诱导公式推导,根据相关诱导公式推导,分别等于什么?分别等于什么?3si n(),2pa-3cos(),2pa-3si n(),2pa+)23cos(tan()tan12paa+= -思考思考6 6:正弦函数与余弦函数互称为余函正弦函数与余弦函数互称为余函数,你能概括一下公式五、六的共同特数,你能概括一下公式五、六的共同特点和规律吗?

6、点和规律吗? 公式六:公式六: sin)2cos(cos)2sin( 公式五:公式五: sin)2cos(cos)2sin(思考思考7 7:诱导公式可统一为诱导公式可统一为的三角函数与的三角函数与的三角函数之间的关系,的三角函数之间的关系,你有什么办法记住这些公式?你有什么办法记住这些公式?)Zk(2k奇变偶不变,符号看象限奇变偶不变,符号看象限.理论迁移理论迁移例例1 1 化简:化简:)29)sin(-)sin(-)sin(3-cos()-211)cos(2)cos()cos(-sin(2 例例2 2 已知已知 ,求,求 的值的值32)6(cos)32(sin 例例3 3 已知已知 ,求,求

7、 的值的值. .31)30(sin)60(sin1)60(cos)30(tan12.2.诱导公式是三角变换的基本公式,其诱导公式是三角变换的基本公式,其中角中角可以是一个单角,也可以是一个可以是一个单角,也可以是一个复角,应用时要注意整体把握、灵活变复角,应用时要注意整体把握、灵活变通通. .小结作业1.1.诱导公式反映了各种不同形式的角的三诱导公式反映了各种不同形式的角的三角函数之间的相互关系,并具有一定的规角函数之间的相互关系,并具有一定的规律性,律性,“奇变偶不变,符号看象限奇变偶不变,符号看象限”,是,是记住这些公式的有效方法记住这些公式的有效方法. .作业作业: : P29P29习题习题1.3 A1.3 A组:组:3.3. B B组:组:1 1,2.2.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁