《2022年北师大版初一数学上册知识点.docx》由会员分享,可在线阅读,更多相关《2022年北师大版初一数学上册知识点.docx(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022年北师大版初一数学上册知识点 高效的学习,要学会给自己定定目标(大、小、长、短),这样学习会有一个方向;然后要学会梳理自身学习状况,以课本为基础,结合自己做的笔记、试卷、驾驭的薄弱环节、存在的问题等,合理的安排时间,有针对性、详细的去一点一点的攻克、落实。本篇文章是我为您整理的北师大版初中一年级数学上册学问点,供大家借鉴。 北师大版初一数学上册学问点 1.有理数: (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.留意:0即不是正数,也不是负数;-a不肯定是负数,+a也不肯定是正数;不是有理数; (2)留意:有理数中,1、0、
2、-1是三个特别的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)留意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b; 4.肯定值: (1)正数的肯定值是其本身,0的肯定值是0,负数的肯定值是它的相反数;留意:肯定值的意义是数轴上表示某数的点离开原点的距离; (2)肯定值可表示为: 肯定值的问题常常分类探讨; (3)a|是重要的非负数,即|a|0;留意:|a|?|
3、b|=|a?b|, 5.有理数比大小:(1)正数的肯定值越大,这个数越大;(2)正数恒久比0大,负数恒久比0小;(3)正数大于一切负数;(4)两个负数比大小,肯定值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数0,小数-大数0. 北师大版初一数学上册学问点 二元一次方程组 1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.留意:一般说二元一次方程有多数个解. 2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组. 3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.留
4、意:一般说二元一次方程组只有解(即公共解). 4.二元一次方程组的解法: (1)代入消元法;(2)加减消元法; (3)留意:推断如何解简洁是关键. 5.一次方程组的应用: (1)对于一个应用题设出的未知数越多,列方程组可能简单一些,但解方程组可能比较麻烦,反之则难列易解 (2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值; (3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系. 一元一次不等式(组) 1.不等式:用不等号,把两个代数式连接起来的式子叫不等式. 2.不等式的基本性质: 不等式的基本性质1:不等式两边都加上(或减
5、去)同一个数或同一个整式,不等号的方向不变; 不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变; 不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要变更. 3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式全部解的集合,叫做这个不等式的解集. 4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0). 5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但肯定要留意不等式性质3的应用;留意:在数轴上表示不等式的解
6、集时,要留意空圈和实点. 北师大版初一数学上册学问点 整式的加减 一、代数式 1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。 2、用数值代替代数式里的字母,根据代数式里的运算关系计算得出的结果,叫做代数式的值。 二、整式 1、单项式: (1)由数和字母的乘积组成的代数式叫做单项式。 (2)单项式中的数字因数叫做这个单项式的系数。 (3)一个单项式中,全部字母的指数的和叫做这个单项式的次数。 2、多项式 (1)几个单项式的和,叫做多项式。 (2)每个单项式叫做多项式的项。 (3)不含字母的项叫做常数项。 3、升幂排列与降幂排列 (1)把多项式按x的指数
7、从大到小的依次排列,叫做降幂排列。 (2)把多项式按x的指数从小到大的依次排列,叫做升幂排列。 三、整式的加减 1、整式加减的理论依据是:去括号法则,合并同类项法则,以及乘法安排率。 去括号法则:假如括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;假如括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都变更符号。 2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。 合并同类项: (1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。 (2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。 (3)合并同类项步
8、骤: a.精确的找出同类项。 b.逆用安排律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。 c.写出合并后的结果。 (4)在驾驭合并同类项时留意: a.假如两个同类项的系数互为相反数,合并同类项后,结果为0. b.不要漏掉不能合并的项。 c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。 说明:合并同类项的关键是正确推断同类项。 3、几个整式相加减的一般步骤: (1)列出代数式:用括号把每个整式括起来,再用加减号连接。 (2)按去括号法则去括号。 (3)合并同类项。 4、代数式求值的一般步骤: (1)代数式化简 (2)代入计算 (3)对于某些特别的代数式,可采纳“整
9、体代入”进行计算。 图形的初步相识 一、立体图形与平面图形 1、长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。 2、长方形、正方形、三角形、圆等都是平面图形。 3、很多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以绽开成平面图形。 二、点和线 1、经过两点有一条直线,并且只有一条直线。 2、两点之间线段最短。 3、点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。类似的还有线段的三等分点、四等分点等。 4、把线段向一方无限延长所形成的图形叫做射线。 三、角 1、角是由两条有公共端点的射线组成的图形。 2、围着端点旋转到角的终边和始边成
10、一条直线,所成的角叫做平角。 3、围着端点旋转到终边和始边再次重合,所成的角叫做周角。 4、度、分、秒是常用的角的度量单位。 把一个周角360等分,每一份就是一度的角,记作1;把1度的角60等分,每份叫做1分的角,记作1;把1分的角60等分,每份叫做1秒的角,记作1。 四、角的比较 从一个角的顶点动身,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。 五、余角和补角 1、假如两个角的和等于90(直角),就说这两个角互为余角。 2、假如两个角的和等于180(平角),就说这两个角互为补角。 3、等角的补角相等。 4、等角的余角相等。 六、相交线 1、定义:两条直线相交
11、,所成的四个角中有一个角是直角,那么这两条直线相互垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。 2、留意: 垂线是一条直线。 具有垂直关系的两条直线所成的4个角都是90。 垂直是相交的特别状况。 垂直的记法:ab,ABCD。 3、画已知直线的垂线有多数条。 4、过一点有且只有一条直线与已知直线垂直。 5、连接直线外一点与直线上各点的全部线段中,垂线段最短。简洁说成:垂线段最短。 6、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。 7、有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。 两条直线相交有4对邻补角。 8、有公共的顶点,角的两
12、边互为反向延长线,这样的两个角叫做对顶角。两条直线相交,有2对对顶角。对顶角相等。 七、平行线 1、在同一平面内,两条直线没有交点,则这两条直线相互平行,记作:ab。 2、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。 3、假如两条直线都与第三条直线平行,那么这两条直线也相互平行。 4、判定两条直线平行的方法: (1)两条直线被第三条直线所截,假如同位角相等,那么这两条直线平行。简洁说成:同位角相等,两直线平行。 (2)两条直线被第三条直线所截,假如内错角相等,那么这两条直线平行。简洁说成:内错角相等,两直线平行。 (3)两条直线被第三条直线所截,假如同旁内角互补,那么这两条直线平
13、行。简洁说成:同旁内角互补,两直线平行。 5、平行线的性质 (1)两条平行线被第三条直线所截,同位角相等。简洁说成:两直线平行,同位角相等。 (2)两条平行线被第三条直线所截,内错角相等。简洁说成:两直线平行,内错角相等。 (3)两条平行线被第三条直线所截,同旁内角互补。简洁说成:两直线平行,同旁内角互补。 北师大版初一数学上册学问点第10页 共10页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页第 10 页 共 10 页