2022年二次函数知识点总结.docx

上传人:h**** 文档编号:24378273 上传时间:2022-07-04 格式:DOCX 页数:12 大小:21.70KB
返回 下载 相关 举报
2022年二次函数知识点总结.docx_第1页
第1页 / 共12页
2022年二次函数知识点总结.docx_第2页
第2页 / 共12页
点击查看更多>>
资源描述

《2022年二次函数知识点总结.docx》由会员分享,可在线阅读,更多相关《2022年二次函数知识点总结.docx(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2022年二次函数知识点总结 在数学中,二次函数的最高阶必需是二次的。在数学中,二次函数主要探讨学生对公式的应用,是数学学问的重点。二次函数学问点总结有哪些?一起来看看二次函数学问点总结,欢迎查阅! 数学二次函数学问点归纳 计算方法 1.样本平均数: ;若 , , ,则 (a常数, , , 接近较整的常数a);加权平均数: ;平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越精确。 2.样本方差: ;若 , , ,则 (a接近 、 、 的平均数的较“整”的常数);若 、 、 较“小”较“整”,则 ;样本方差是刻划数据的离散程度(波动大小)的特

2、征数,当样本容量较大时,样本方差特别接近总体方差,通常用样本方差去估计总体方差。 3.样本标准差: 三、 应用举例(略) 初三数学学问点:第四章 直线形 相交线与平行线、三角形、四边形的有关概念、判定、性质。 内容提要 一、 直线、相交线、平行线 1.线段、射线、直线三者的区分与联系 从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。 2.线段的中点及表示 3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”) 4.两点间的距离(三个距离:点-点;点-线;线-线) 5.角(平角、周角、直角、锐角、钝角) 6.互为余角、互为补角及表示方法 7.

3、角的平分线及其表示 8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”) 9.对顶角及性质 10.平行线及判定与性质(互逆)(二者的区分与联系) 11.常用定理:同平行于一条直线的两条直线平行(传递性);同垂直于一条直线的两条直线平行。 12.定义、命题、命题的组成 13.公理、定理 14.逆命题 二、 三角形 分类:按边分; 按角分 1.定义(包括内、外角) 2.三角形的边角关系:角与角:内角和及推论;外角和;n边形内角和;n边形外角和。边与边:三角形两边之和大于第三边,两边之差小于第三边。角与边:在同一三角形中, 3.三角形的主要线段 探讨:定义_线的交点三角形的心性质 高线中线

4、角平分线中垂线中位线 一般三角形特别三角形:直角三角形、等腰三角形、等边三角形 4.特别三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质 5.全等三角形 一般三角形全等的判定(SAS、ASA、AAS、SSS) 特别三角形全等的判定:一般方法专用方法 6.三角形的面积 一般计算公式性质:等底等高的三角形面积相等。 7.重要协助线 中点配中点构成中位线;加倍中线;添加协助平行线 8.证明方法 干脆证法:综合法、分析法 间接证法反证法:反设归谬结论 证线段相等、角相等常通过证三角形全等 证线段倍分关系:加倍法、折半法 证线段和差关系:延结法、截余法 证面积关系:将面积表示出来

5、 三、 四边形 分类表: 1.一般性质(角) 内角和:360 顺次连结各边中点得平行四边形。 推论1:顺次连结对角线相等的四边形各边中点得菱形。 推论2:顺次连结对角线相互垂直的四边形各边中点得矩形。 外角和:360 2.特别四边形 探讨它们的一般方法: 平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定 判定步骤:四边形平行四边形矩形正方形 菱形 对角线的纽带作用: 3.对称图形 轴对称(定义及性质);中心对称(定义及性质) 4.有关定理:平行线等分线段定理及其推论1、2 三角形、梯形的中位线定理 平行线间的距离到处相等。(如,找下图中面积相等的三角形) 5.重要协助线:常连结

6、四边形的对角线;梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。 6.作图:随意等分线段。 二次函数学问点总结 I.定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系:y=ax2+bx+c (a,b,c为常数,a0,且a确定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以确定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。 二次函数表达式的右边通常为二次三项式。 II.二次函数的三种表达式 一般式:y=ax2+bx+c(a,b,c为常数,a0) 顶点式:y=a(x-h)2+k 抛

7、物线的顶点P(h,k) 交点式:y=a(x-x?)(x-x ?) 仅限于与x轴有交点A(x? ,0)和 B(x?,0)的抛物线 注:在3种形式的相互转化中,有如下关系: h=-b/2a k=(4ac-b2)/4a x?,x?=(-bb2-4ac)/2a III.二次函数的图像 在平面直角坐标系中作出二次函数y=x2的图像,可以看出,二次函数的图像是一条抛物线。 IV.抛物线的性质 1.抛物线是轴对称图形。对称轴为直线 x = -b/2a。 对称轴与抛物线唯一的交点为抛物线的顶点P。特殊地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为:P ( -b/2a ,(

8、4ac-b2)/4a )当-b/2a=0时,P在y轴上;当= b2-4ac=0时,P在x轴上。 3.二次项系数a确定抛物线的开口方向和大小。 当a0时,抛物线向上开口;当a0时,抛物线向下开口。|a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a共同确定对称轴的位置。 当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右。 5.常数项c确定抛物线与y轴交点。 抛物线与y轴交于(0,c) 6.抛物线与x轴交点个数 = b2-4ac0时,抛物线与x轴有2个交点。 = b2-4ac=0时,抛物线与x轴有1个交点。 = b2-4ac0时,抛物线与x轴没有

9、交点。X的取值是虚数(x= -bb2-4ac 的值的相反数,乘上虚数i,整个式子除以2a) V.二次函数与一元二次方程 特殊地,二次函数(以下称函数)y=ax2+bx+c, 当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax2+bx+c=0 此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。 1.二次函数y=ax2,y=a(x-h)2,y=a(x-h)2 +k,y=ax2+bx+c(各式中,a0)的图象形态相同,只是位置不同,它们的顶点坐标及对称轴如下表: 当h0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到, 当h0时,

10、则向左平行移动|h|个单位得到. 当h0,k0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2 +k的图象; 当h0,k0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象; 当h0,k0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象; 当h0,k0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象; 因此,探讨抛物线 y=ax2+bx+c(a0)的图象,通过配方,将一般式化为y=a(x-h)2+k的形式,可确定其

11、顶点坐标、对称轴,抛物线的大体位置就很清晰了.这给画图象供应了便利. 2.抛物线y=ax2+bx+c(a0)的图象:当a0时,开口向上,当a0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,4ac-b2/4a). 3.抛物线y=ax2+bx+c(a0),若a0,当x -b/2a时,y随x的增大而减小;当x -b/2a时,y随x的增大而增大.若a0,当x -b/2a时,y随x的增大而增大;当x -b/2a时,y随x的增大而减小. 4.抛物线y=ax2+bx+c的图象与坐标轴的交点: (1)图象与y轴肯定相交,交点坐标为(0,c); (2)当=b2-4ac0,图象与x轴交于两点A(

12、x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax2+bx+c=0 (a0)的两根.这两点间的距离AB=|x?-x?| 当=0.图象与x轴只有一个交点; 当0.图象与x轴没有交点.当a0时,图象落在x轴的上方,x为任何实数时,都有y0;当a0时,图象落在x轴的下方,x为任何实数时,都有y0. 5.抛物线y=ax2+bx+c的最值:假如a0(a0),则当x= -b/2a时,y最小(大)值=(4ac-b2)/4a. 顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值. 6.用待定系数法求二次函数的解析式 (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,

13、可设解析式为一般形式: y=ax2+bx+c(a0). (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)2+k(a0). (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a0). 7.二次函数学问很简单与其它学问综合应用,而形成较为困难的综合题目。因此,以二次函数学问为主的综合性题目是中考的热点考题,往往以大题形式出现. 二次函数学问点总结大全 二次函数概念 一般地,把形如y=ax?+bx+c(其中a、b、c是常数,a0,b,c可以为0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项

14、。x为自变量,y为因变量。等号右边自变量的最高次数是2。二次函数图像是轴对称图形。 留意:“变量”不同于“自变量”,不能说“二次函数是指变量的最高次数为二次的多项式函数”。“未知数”只是一个数(详细值未知,但是只取一个值),“变量”可在实数范围内随意取值。在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数也会遇到特别状况),但是函数中的字母表示的是变量,意义已经有所不同。从函数的定义也可看出二者的差别,犹如函数不等于函数的关系。 二次函数公式大全 二次函数 I.定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax

15、?+bx+c(a,b,c为常数,a0) 则称y为x的二次函数。 二次函数表达式的右边通常为二次三项式。 II.二次函数的三种表达式 一般式:y=ax?;+bx+c(a,b,c为常数,a0) 顶点式:y=a(x-h)?;+k 抛物线的顶点P(h,k) 交点式:y=a(x-x1)(x-x2) 仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线 注:在3种形式的相互转化中,有如下关系: h=-b/2a k=(4ac-b?;)/4a x1,x2=(-bb?;-4ac)/2a III.二次函数的图象 在平面直角坐标系中作出二次函数y=x?的图象, 可以看出,二次函数的图象是一条抛物线。 IV.抛

16、物线的性质 1.抛物线是轴对称图形。对称轴为直线 x = -b/2a。 对称轴与抛物线唯一的交点为抛物线的顶点P。 特殊地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为 P -b/2a ,(4ac-b?;)/4a 。 当-b/2a=0时,P在y轴上;当= b?-4ac=0时,P在x轴上。 3.二次项系数a确定抛物线的开口方向和大小。 当a0时,抛物线向上开口;当a0时,抛物线向下开口。 |a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a共同确定对称轴的位置。 当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴

17、右。 5.常数项c确定抛物线与y轴交点。 抛物线与y轴交于(0,c) 6.抛物线与x轴交点个数 = b?-4ac0时,抛物线与x轴有2个交点。 = b?-4ac=0时,抛物线与x轴有1个交点。 = b?-4ac0时,抛物线与x轴没有交点。 V.二次函数与一元二次方程 特殊地,二次函数(以下称函数)y=ax?;+bx+c, 当y=0时,二次函数为关于x的一元二次方程(以下称方程), 即ax?;+bx+c=0 此时,函数图象与x轴有无交点即方程有无实数根。 函数与x轴交点的横坐标即为方程的根。 二次函数学问点总结第12页 共12页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页第 12 页 共 12 页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁