《2022年一元一次方程应用题归类汇集 2.pdf》由会员分享,可在线阅读,更多相关《2022年一元一次方程应用题归类汇集 2.pdf(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、1 一元一次方程应用题归类汇集一、一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程速度 时间时间路程 速度速度路程 时间2.行程问题基本类型(1)相遇问题:快行距慢行距原距(2)追及问题:快行距慢行距原距1、从甲地到乙地,某人步行比乘公交车多用3.6 小时, 已知步行速度为每小时8 千米, 公交车的速度为每小时40 千米,设甲、乙两地相距x千米,则列方程为。2、某人从家里骑自行车到学校。若每小时行15 千米,可比预定时间早到15 分钟;若每小时行9千米,可比预定时间晚到15 分钟;求从家里到学校的路程有多少千米?3、一列客车车长200 米,一列货车车长280 米,在平行的
2、轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16 秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?4、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26 秒。行人的速度为每秒多少米? 这列火车的车长是多少米?5、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。汽车速度是60 千米/ 时,步行的速度是5 千米 / 时,步行者比汽车提前1 小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。出发地
3、到目的地的距离是60 千米。 问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)6、某人计划骑车以每小时12 千米的速度由A地到 B地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20 分,便只好以每小时15 千米的速度前进,结果比规定时间早4 分钟到达 B地,求 A、 B两地间的距离。7、一列火车匀速行驶,经过一条长300m的隧道需要20s 的时间。隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s,根据以上数据,你能否求出火车的长度?火车的长度是多少?若不能,请说明理由。8、两列火车分别行驶在平行的轨道上,其中快车车长为100 米, 慢
4、车车长 150 米,已知当两车相向而行时,快车驶过慢车某个窗口所用的时间为5 秒。 两车的速度之和及两车相向而行时慢车经过快车某一窗口所用的时间各是多少? 如果两车同向而行,慢车速度为8 米 / 秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需的时间至少是多少秒?9、甲、乙两人同时从A地前往相距25.5 千米的 B地,甲骑自行车,乙步行,甲的速度比乙的速度的 2 倍还快 2 千米 / 时,甲先到达B地后, 立即由 B地返回, 在途中遇到乙,这时距他们出发时已过了 3 小时。求两人的速度。名师归纳总结 精品学习资料 - - - - - - - - - -
5、- - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 1 页,共 5 页 - - - - - - - - - 2 二、环行跑道与时钟问题:1、在 6 点和 7 点之间,什么时刻时钟的分针和时针重合?2、甲、乙两人在400 米长的环形跑道上跑步,甲分钟跑240 米,乙每分钟跑200 米,二人同时同地同向出发,几分钟后二人相遇?若背向跑,几分钟后相遇?3、在 3 时和 4 时之间的哪个时刻,时钟的时针与分针:重合;成平角;成直角;4、某钟表每小时比标准时间慢3 分钟。若在清晨6 时 30 分与准确时间对准,则当天中午该钟表指示时间为12 时
6、50 分时,准确时间是多少?三、行船与飞机飞行问题:航行问题:顺水(风)速度静水(风)速度水流(风)速度逆水(风)速度静水(风)速度水流(风)速度水流速度 =(顺水速度 -逆水速度) 21、 一艘船在两个码头之间航行,水流的速度是3 千米 / 时,顺水航行需要2 小时,逆水航行需要3小时,求两码头之间的距离。2、一架飞机飞行在两个城市之间,风速为每小时24 千米, 顺风飞行需要2 小时 50 分钟, 逆风飞行需要 3 小时,求两城市间的距离。3、小明在静水中划船的速度为10 千米 / 时,今往返于某条河,逆水用了9 小时,顺水用了6 小时,求该河的水流速度。4、某船从A码头顺流航行到B码头,然
7、后逆流返行到C码头,共行20 小时,已知船在静水中的速度为 7.5 千米 / 时,水流的速度为2.5 千米 / 时,若 A与 C的距离比A与 B的距离短40 千米,求A与 B的距离。四、工程问题1工程问题中的三个量及其关系为:工作总量工作效率 工作时间2经常在题目中未给出工作总量时,设工作总量为单位1。即完成某项任务的各工作量的和总工作量11、一项工程,甲单独做要10 天完成,乙单独做要15 天完成,两人合做4 天后,剩下的部分由乙单独做,还需要几天完成?2、某工作 , 甲单独干需用15 小时完成 , 乙单独干需用12 小时完成 , 若甲先干1 小时、乙又单独干4小时 , 剩下的工作两人合作,
8、 问: 再用几小时可全部完成任务? 3、某工厂计划26 小时生产一批零件,后因每小时多生产5 件,用 24 小时,不但完成了任务,而且还比原计划多生产了60 件,问原计划生产多少零件?4、某工程,甲单独完成续20 天,乙单独完成续12 天,甲乙合干6 天后,再由乙继续完成,乙再做几天可以完成全部工程? 5、已知甲、乙二人合作一项工程,甲25 天独立完成,乙20 天独立完成,甲、乙二人合5 天后,甲另有事,乙再单独做几天才能完成?名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - -
9、 - 第 2 页,共 5 页 - - - - - - - - - 3 五、市场经济问题1、某高校共有5 个大餐厅和2 个小餐厅经过测试:同时开放1 个大餐厅、 2 个小餐厅,可供1680名学生就餐;同时开放2 个大餐厅、 1 个小餐厅,可供2280 名学生就餐(1)求 1 个大餐厅、 1 个小餐厅分别可供多少名学生就餐;(2)若 7 个餐厅同时开放,能否供全校的5300 名学生就餐?请说明理由解: (1)设 1 个小餐厅可供y名学生就餐,则1 个大餐厅可供(1680-2y)名学生就餐,根据题意,得 2(1680-2y)+y=2280 解得: y=360(名)所以1680-2y=960(名)(
10、2)因为960 5360 255205300,所以如果同时开放7个餐厅,能够供全校的5300名学生就餐 2、工艺商场按标价销售某种工艺品时,每件可获利45 元;按标价的八五折销售该工艺品8 件与将标价降低35 元销售该工艺品12 件所获利润相等. 该工艺品每件的进价、标价分别是多少元?解:设该工艺品每件的进价是x元, 标价是( 45+x)元 . 依题意,得 : 8(45+x) 0.85-8x= (45+x-35 ) 12-12x 解得: x=155(元)所以45+x=200(元)3、某地区居民生活用电基本价格为每千瓦时0.40 元,若每月用电量超过a 千瓦则超过部分按基本电价的 70% 收费(
11、1)某户八月份用电84 千瓦时,共交电费30.72 元,求 a(2)若该用户九月份的平均电费为0.36 元,则九月份共用电多少千瓦??应交电费是多少元?解: (1)由题意,得 0.4a+(84-a ) 0.40 70%=30.72 解得 a=60 (2)设九月份共用电x 千瓦时, 0.40 60+(x-60 ) 0.40 70%=0.36x 解得 x=90 所以 0.36 90=32.40 (元)答: 90 千瓦时,交32.40 元4、某商店开张为吸引顾客,所有商品一律按八折优惠出售,已知某种旅游鞋每双进价为60 元,八折出售后,商家所获利润率为40% 。问这种鞋的标价是多少元?优惠价是多少?
12、利润率 =成本利润 40%=6060%80X X=105 105*80%=84元5、甲乙两件衣服的成本共500 元,商店老板为获取利润,决定将家服装按50% 的利润定价,乙服装按 40% 的利润定价,在实际销售时,应顾客要求,两件服装均按9 折出售,这样商店共获利157元,求甲乙两件服装成本各是多少元?解:设甲服装成本价为x 元,则乙服装的成本价为(50 x)元,根据题意,可列109x(1+50%) x+(500-x)(1+40%)90% - (500 - x)=157 x=3006、某商场按定价销售某种电器时,每台获利48 元,按定价的9 折销售该电器6 台与将定价降低30元销售该电器9 台
13、所获得的利润相等,该电器每台进价、定价各是多少元?(48+X)90%*6 6X=(48+X-30)*9 9X X=162 162+48=2107、甲、乙两种商品的单价之和为100 元,因为季节变化, 甲商品降价10% ,乙商品提价5% ,调价后,甲、乙两商品的单价之和比原计划之和提高2% ,求甲、乙两种商品的原来单价?解:x(1-10%)+(100-x)(1+5%)=100(1+2%) x=20名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 3 页,共 5 页 -
14、- - - - - - - - 4 8、一家商店将某种服装按进价提高40% 后标价,又以8 折优惠卖出,结果每件仍获利15 元,这种服装每件的进价是多少?解:设这种服装每件的进价是x 元,则:X(1+40) 0.8-x=15 解得 x=125 六、调配与配套问题1、某车间有16 名工人,每人每天可加工甲种零件5 个或乙种零件4 个在这 16 名工人中,一部分人加工甲种零件,其余的加工乙种零件?已知每加工一个甲种零件可获利16 元,每加工一个乙种零件可获利24 元若此车间一共获利1440 元, ?求这一天有几个工人加工甲种零件2、有两个工程队,甲工程队有32 人,乙工程队有28 人,如果是甲工程
15、队的人数是工程队人数的2倍,需从乙工程队抽调多少人到甲工程队?3、某班同学利用假期参加夏令营活动,分成几个小组,若每组7 人还余1 人,若每组8 人还缺6人,问该班分成几个小组,共有多少名同学?4、将一个装满水的内部长、宽、高分别为300 毫米, 300 毫米和 80?毫米的长方体铁盒中的水,倒入一个内径为200 毫米的圆柱形水桶中, 正好倒满, 求圆柱形水桶的高 (精确到0.1 毫米,3.14 ) 5、某车间有28 名工人生产螺栓和螺母,每人每小时平均能生产螺栓12 个或螺母18 个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好配套(一个螺栓配两个螺母)?6、机械厂加工车间有85 名
16、工人,平均每人每天加工大齿轮16 个或小齿轮10 个,已知2 个大齿轮与 3 个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?7、某厂一车间有64 人,二车间有56 人。现因工作需要, 要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间?8、甲、乙两车间各有工人若干,如果从乙车间调100 人到甲车间,那么甲车间的人数是乙车间剩余人数的 6 倍;如果从甲车间调100 人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。七、方案设计问题1、某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000 元, ?经粗加工后销售,每吨
17、利润可达4500 元,经精加工后销售,每吨利润涨至7500 元,当地一家公司收购这种蔬菜140 吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16 吨,如果进行精加工,每天可名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 4 页,共 5 页 - - - - - - - - - 5 加工 6 吨, ?但两种加工方式不能同时进行,受季度等条件限制,公司必须在15 天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工方案二
18、:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,?在市场上直接销售方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15 天完成你认为哪种方案获利最多?为什么?解:方案一:因为每天粗加工16 吨,140 吨可以在15 天内加工完, 总利润 W1=4500 140=630000( 元) 方案二: 15 天可以加工615=90 吨,说明还有50 吨需要在市场直接销售,总利润 W2=750090+100050=725000( 元) ;方案三:现将x 吨进行精加工,将(140-x )吨进行粗加工,15161406xx,解得 x=60. 总利润 W3=750060+450080=810000
19、( 元) 2、 某家电商场计划用9 万元从生产厂家购进50 台电视机 已知该厂家生产3?种不同型号的电视机,出厂价分别为A种每台 1500 元, B种每台 2100 元, C种每台 2500 元( 1)若家电商场同时购进两种不同型号的电视机共50 台,用去9 万元,请你研究一下商场的进货方案( 2)若商场销售一台A种电视机可获利150 元,销售一台B种电视机可获利200 元, ?销售一台C 种电视机可获利250 元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?解:按购A,B两种, B,C两种, A,C两种电视机这三种方案分别计算,设购 A种电视机x 台,则 B种
20、电视机y 台(1)当选购A,B两种电视机时,B种电视机购(50-x )台,可得方程 1500 x+2100(50-x )=90000 x=25 50-x=25 当选购A,C两种电视机时,C种电视机购(50-x )台,可得方程1500 x+2500 (50-x )=90000 x=35 50-x=15 当购 B,C两种电视机时,C种电视机为(50-y )台可得方程2100y+2500 (50-y )=90000 4y=350,不合题意可选两种方案: 一是购 A ,B两种电视机25 台;二是购 A种电视机35 台,C种电视机15 台(2)若选择(1) ,可获利 15025+250 15=8750 (元), 若选择(1),可获利 15035+25015=9000(元)故为了获利最多,选择第二种方案名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -精心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 5 页,共 5 页 - - - - - - - - -