《山东大学数学学院数学实验作业题.doc》由会员分享,可在线阅读,更多相关《山东大学数学学院数学实验作业题.doc(177页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date山东大学数学学院数学实验作业题山东大学数学学院数学实验作业题数学实验成员签名:曹云 20070901005李宪锋 20070901061李晓翾 20070901062施尚 20070901110实验二 教堂顶部曲面面积的计算方法实验题目:教堂顶部曲面面积的计算方法实验目的:本试验主要涉及微积分, 通过试验将复习曲面面积的计算、 重积分和Taylor 展开等知识;另外将
2、介绍重积分的数值计算法和取得函数近似解析表达式的摄动方法。实验内容:思考下面这个实际问题并借助数学软件完成后面4个题的解答:某个阿拉伯国家有一座著名的伊斯兰教堂,它以中央大厅的金色巨大拱形圆顶名震遐迩。因年久失修,国王下令将教堂顶部重新贴金箔装饰。据档案记载,大厅的顶部形状为球面,其半径为30m。考虑到可能的损耗和其他技术因素,实际用量将会比教堂顶部面积多1.5.据此, 国王的财政大臣拨出了可制造 5750m 有规定厚度金箔的黄金。 建筑商人哈桑略通数学,他计算了一下,觉得黄金会有盈余。于是,他以较低的承包价得到了这项装饰工程,但在施工前的测量中,工程师发现教堂顶部实际上并非是一个精确的半球面
3、而是半椭圆球面, 其半立轴恰是 30 m , 而半长轴和半短轴分别是30.6m和29.6m。这一来哈桑犯了愁,他担心黄金是否还有盈余?甚至可能短缺。最后的结果究竟如何呢?1. 用近似格式(2.10)计算教堂顶部面积,与用格式(2.8)计算的结果相比较;2. 试用数学软件直接计算面积 (2.3);3. 在俄国沙皇的宫廷宝藏中,有许多复活节蛋,它们大都以金银制作,装饰着或者内藏着各种钻石。其中有一中较大的金“蛋”,“蛋”壳的外层表面是一个椭球面,其半长轴、半短轴和半立轴分别为 8cm、5.2m 和 5cm。“蛋”壳的厚度为 0.24cm,重量是 1680g。用所学的知识解决这只复活节蛋的壳是否用纯
4、金制作的。(金的密度是19.2g/cm)4. 建筑商人哈桑在对另一座伊斯兰建筑物顶部表面进行装饰时,他碰到的是一个类似半球面、然而又具有一些其他变化规律的曲面,哈桑这次仍要对该建筑物的顶部贴以金箔,我们可以确切地用球坐标表示该曲面方程,为其中 R30(m),(请考虑一下,这是怎样地一个曲面?)如果由技术和损耗的因素将使用料比实际面积多1.6%,那么装饰这个顶部至少需要多少金箔? 试用数值方法和摄动方法分别求解这个问题,并将两种方法的结果比较。(注意:这里给出的曲面方程是参数形式的,因此首先需要弄清这种情况下曲面的计算式有什么变化。) 采用方法: 1. 取椭圆中心为坐标原点建立直角坐标系,则教堂
5、顶部半椭圆球面的方程可写为:其中R=30,a=30.6 ,b=29.6,而其表面积为这里积分区域D为通过简单的计算容易得到引进变量代换则有 这个积分相当复杂,不过关于变量r还是可以积出初等函数的表达式,有兴趣的读者可以试一试,若记那么 (2.3) 中关于 r 的积分这里 1 的情况要对表达式求极限。 注意到 的表达式(2.4),若将式(2.5)带入式(2.3)得到的是一个极为复杂的积分式。 事实上,这是一个无法以初等函数形式来表达的积分, 因此我们必须使用近似方法来处理它。考虑到这一积分形式相当复杂,我们宁可直接对式(2.3)来进行处理。2. 数值积分方法:对于二重积分,可以如同一元函数定积分
6、那样,将区域划分为小块,然后在每个小区域上对被积函数作近似简化求积 ,再把所得的值求和即可。3摄动方法:简单地说,摄动方法就是对解析式中的小参数进行展开,从而求得近似解析解的方法,应用于积分计算,常常是采取将被积函数(或其部分)展开的方法。使用的主要程序:程序1:m= 18;a= 8.0-0.14;b= 5.2-0.14;R= 5.0-0.14;h= 1/(2*m);k= 2*pi/(2*m);e= 0 : k : 2*pi;t= (0 : h : 1);% 算式(2.13)f= sqrt(t.2*ones(size(t) + R2*(1-t.2)*(cos(e)/a).2+(sin(e)/b
7、).2);clear Iij;for j= 2:2:2*m for i= 2:2:2*m% 算式(2.10) Iij(i,j)= k*h/9*( f(i-1,j-1)+f(i+1,j-1)+f(i-1,j+1)+f(i+1,j+1). + 4*(f(i,j-1)+f(i-1,j)+f(i+1,j)+f(i,j+1). + 16*f(i,j) ); endendI= sum(sum(Iij);S= 2*a*b*I;L= 0.24*S;sprintf( 不是。纯金蛋应重%7.2f克,该蛋壳密度为%5.2f(g/cm3)。n,19.2*L,1680/L)程序2:m= 15;R= 30;k= pi/6
8、/(2*m);h= pi/2/(2*m);u= 0 : k : pi/6;v= (0 : h : pi/2); for j= 1:2*m+1 for i= 1:2*m+1 f(i,j)= sqrt( 1/100*R2*sin(v(j)2*(101+20*sin(6*u(i)+35*cos(6*u(i)2). *(1/100*R2*cos(v(j)2+1/5*R2*cos(v(j)2*sin(6*u(i). -1/100*R2*cos(v(j)2*cos(6*u(i)2+R2). -9/2500*sin(v(j)2*R4*cos(v(j)2*cos(6*u(i)2*(10+sin(6*u(i)2
9、 ); end end clear Iij;for j= 2:2:2*m for i= 2:2:2*m% 算式(2.10) Iij(i,j)= k*h/9*( f(i-1,j-1)+f(i+1,j-1)+f(i-1,j+1)+f(i+1,j+1). + 4*(f(i,j-1)+f(i-1,j)+f(i+1,j)+f(i,j+1). + 16*f(i,j) ); endendI= sum(sum(Iij);S= 12*I;ans= sprintf( 表面积%7.2f (m2), 需金箔%7.2f (m2)n,S,(1+0.016)*S)text(-50,-70,1,ans)实验结果:1. 近似格
10、式2.8计算的结果:mSmS25 621.42165 679.8345 679.78245 679.8265 679.89445 679.81105 679.891005 679.81. 近似格式2.10计算的结果: mSmS25700.54165679.8145679.88245679.8165679.81445679.81105679.811005679.812. 用数学软件直接计算面积2.3得:S = 5679.823. 由算式2.10(见程序1)计算得:不是。纯金蛋应重2004.25克,该蛋壳密度为16.09(g/cm3)。4. 由程序2计算得:表面积为6454.59 (m2), 需要
11、金箔6557.87 (m2)实验三 导弹跟踪问题实验目的: 本实验主要涉及常微分方程的建模和求解;介绍两种微分方程的数值方法:Euler法和改进的Euler法;还介绍了仿真方法。实验内容: 1. 应用数学软件或编制计算程序对问题 (3.12) (3.14) 进行数值计算,先运用Euler法,与表3.2以及表3.3的数据比较,并以更小的步长计算结果;再用改进的Euler法计算(步长与Euler法相同)。2在本实验介绍的计算过程中,我们是计算到即停止,然后取,这样做法可能会有不小的误差。有时甚至会出现整体步长改小而结果却未必能改进的情况。由于Euler法或改进的Euler法的计算格式中每一步值的取
12、得仅仅依赖上一步的值,因此在计算过程中改变步长是可行的,即当计算到而y远大于H时,可缩小步长(例如为原来的十分之一)以xy作为新起点继续进行迭代。试用这种变步长方法来改进在任务中得到的结果。3如果当基地发射导弹的同时,敌艇立即由仪器发觉。假定敌艇为一高速快艇,它即刻以135km/h的速度与导弹方向垂直的方向逃逸,问导弹何时何地击中快艇?试建立数学模型并求解。采用方法:主要公式:数学模型:解析方法:导弹轨迹方程:设导弹击中敌舰于点(L,H):数值方法:Euler格式:则为所求改进的Euler方法:主要程序:1Euler法h= 0.0005;H= 120; Vw= 450; Ve= 90; cle
13、ar x y;tk= 0; k= 1;% (3.23)x(1)= 0; y(1)= 0;while y(k) H % (3.21) x(k+1)= x(k) + Vw*h*(Ve*tk-x(k)/sqrt(Ve*tk-x(k)2+(H-y(k)2); % (3.22) y(k+1)= y(k) + Vw*h/sqrt(1+(Ve*tk-x(k)/(H-y(k)2); k= k+1; tk= tk+h;endxysprintf( k = %d , tk = %7.4f n,k-1,tk)sprintf( L = %8.4f , T = %8.4f n,x(k),x(k)/Ve)改进的Euler法
14、h= 0.0005;H= 120; Vw= 450; Ve= 90; clear x y;tk= 0; k= 1;% (3.28)x(1)= 0; y(1)= 0;while y(k) 0.00001 if y(k)H tk=tk-h;tk1=tk-h;k=k-1;h=h/10; end tk1= tk+h; % (3.26) xk1= x(k) + Vw*h*(Ve*tk-x(k)/sqrt(Ve*tk-x(k)2+(H-y(k)2); % (3.27) yk1= y(k) + Vw*h/sqrt(1+(Ve*tk-x(k)/(H-y(k)2); % (3.24) x(k+1)= 0.5*(
15、xk1 + x(k) + Vw*h/sqrt(1+(H-yk1)/(Ve*tk1-xk1)2); % (3.25) y(k+1)= 0.5*(yk1 + y(k) + Vw*h/sqrt(1+(Ve*tk1-xk1)/(H-yk1)2); tk=tk+h;k=k+1;endsprintf( k = %d , tk = %7.4f n,k-1,tk)sprintf( L = %8.4f , T = %8.4f n,x(k),x(k)/Ve)3h= 0.0005;H= 120; Vw= 450; Ve= 135; clfaxis(-5 35 -10 130)hold ontitle()plot(0
16、,H,bo)plot(0,0,r.)pause clear Xw Yw Xe Ye;tk= 0; s= 0;k= 1;Xw(1)= 0; Yw(1)= 0;Xe(1)= 0; Ye(1)= H;while (Xw(k)-Xe(k)2+(Yw(k)-Ye(k)2 0.4 Xw(k+1)= Xw(k) + Vw*h*(Xe(k)-Xw(k)/sqrt(Xe(k)-Xw(k)2+(Ye(k)-Yw(k)2); Yw(k+1)= Yw(k) + Vw*h/sqrt(1+(Xe(k)-Xw(k)/(Ye(k)-Yw(k)2); Xe(k+1)= Xe(k) + Ve*h/sqrt(1+(Xe(k)-Xw
17、(k)/(Ye(k)-Yw(k)2); Ye(k+1)= Ye(k) - Ve*h*(Xe(k)-Xw(k)/sqrt(Xe(k)-Xw(k)2+(Ye(k)-Yw(k)2); s= s+sqrt(Xe(k+1)-Xe(k)2+(Ye(k+1)-Ye(k)2); Wx(1)= Xw(k); Wx(2)= Xw(k+1); Wy(1)= Yw(k); Wy(2)= Yw(k+1); Ex(1)= Xe(k); Ex(2)= Xe(k+1); Ey(1)= Ye(k); Ey(2)= Ye(k+1); plot(Xe(k),Ye(k),wo) plot(Xw(k),Yw(k),w.) plot(X
18、e(k+1),Ye(k+1),bo) plot(Xw(k+1),Yw(k+1),r.) plot(Ex,Ey,b) for rp=0:10 plot(Wx,Wy,y) plot(Wx,Wy,w) plot(Wx,Wy,r) end k= k+1; tk= tk+h;end plot(Xe(k),Ye(k),ro)plot(Xe(k),Ye(k),y*)text(Xe(k)-1,Ye(k)-8, !)sprintf( k = %d , tk = %7.4fn,k-1,tk)ans= sprintf( X=%8.4f, Y=%8.4f, T=%8.4fn,Xe(k),Ye(k),s/Ve)text
19、(10,10,ans)hold offpausecloseclear all实验结果:1 用Euler法:当令时,L = 25.0763 , T = 0.2786。用改进的Euler法:当令时,L = 25.0608 , T = 0.2785。用更小的步长,所得结果更接近解析方法的结果。2所得结果为:L = 24.9563 , T = 0.2773 3敌舰被击中的位置为(33.0906, 110.2464)实验六:个人住房抵押贷款和其他金融问题实验题目:个人住房抵押贷款和其他金融问题实验目的:本实验涉及微积分和线性代数,通过实验复习数列,函数方程求根和与线性代数方程组有关的某些知识:主要是介绍
20、与经济生活中某些常见重要问题有关的离散形式数学模型-差分方程。实验内容:1、 实际问题:1998年12月,中国人民银行公布了新的存,贷款利率水平,其中贷款利率如表1,表2和表3分别列出了上海商业银行报章公布的个人住房商业抵押贷款年利率和上海商业银行提供的个人住房商业性抵押贷款(万元)还款额的部分数据。表1贷款期限半年1年3年5年5年以上利率%6.126.396.667.207.56表2贷款期限1年2年3年4年5年利率6.1206.2556.3906.5256.660表3贷款期年12345月1224364860月还款期到期一次还本付息444.356305.9896237.2649196.4118
21、本息总额10612.0010664.5411015.6311388.7111784.712、 数学模型: 以商业贷款1000元为例,一年期贷款年利率为6.12%,到期一次还本付息总计10612.00元,二年期贷款的年利率为6.255%,月还款数444.3560元恰为本息总额10664.54元的1/24,这是怎么产生的呢? 设贷款后第k个月是欠款余数位阿Ak元,月还款为m元,则由Ak变化到Ak+1,有还款数和利息因素,月利率设为r,从而得到 Ak+1=(1+k)Ak-m, k=0,1,2 (1)开始的贷款数A0 =10000 (2)成为数学模型。 月利率采用将年利率R=0.06255平均,即r=
22、0.06255/12=0.0052125 (3)(1) 称为差分方程。3、 问题的解法与讨论:a.月还款额二年期贷款满足A24=0 (4)令Bk=Ak-Ak-1 (5)由(1)得Bk+1=(1+r)Bk 于是得Bk=B1(1+r)k-1, k=1,2 (6)Ak-A0=B1+B2+Bk =B11+(1+r)+(1+r)k-1 =(A1-A0)(1+r)k-1/r =(1+r)A0-m-A0(1+r)k-1/r从而得到差分方程的解:Ak=A0(1+r)-m/r(1+r)k-1, k=0,1,2, (7)将Ak,A0,r,k=24的值代入得,m=444.3560(元)。b还款周期 如果按月还款的话
23、,显然要比按年付款的钱少。考虑到人们的收入一般均以月薪方式获得,因此逐月归还法对于贷款这是合适的。 若改为逐年归还方法,情况如何呢?以二年为例,则(7)中的r代为R=0.06255 ,k=2,A0=10000,得到m=5473.8673(元)。 本息总额为2m=10947.73(元)。c.平衡点若令Ak+1=Ak=A,可解得A=m/r称之为差分方程(1)的平衡点。 当A0=m/r时,衡有Ak=m/r,k=0,1,2, ,则每月还款额恰抵上利息,则所欠额保持不变。当A0稍大于或小于m/r时,Ak随着k的增大越来越远离m/r,这种平衡点称为不稳定的。 对一般的差分方程Ak+1=f(Ak),k=0,
24、1,2, (9)当初始值稍大于或小于差分方程的平衡点A时,若AkA,(当k) 则称A为稳定的,否则,称A为不稳定的。4.其他问题a.养老保险数学模型:养老保险是与人们生活密切相关的一种保险类型。通常保险公司会提供多种方式的养老金计划让投保人选择,在计划中详细列出保险费和养老金的数额。例如某保险公司的一份材料指出:在每月交费200元至60岁开始领养老金的约定下,男子若25岁起投保,届时月养老金2282元,若35岁起投保,月养老金1056元;若45岁起投保,月养老金420元。我们来考虑这三种情况所交保险费获得的利率。 Fk+1=Fk(1+r)+p, k=0,1,2,N (11) Fk+1=Fk(1
25、+r)-q , k=N+1,N+2,M (12) 其中p,q分别是60岁前所交的月保险费和60岁起所领月养老金数目,r是交保险金获得利率,N,M分别是自投保起至停交保险费和至停交养老金的时间。射手名平均值75岁。以25岁起投保为例,则有p=200,q=2282;N=420,M=600。 不难得到 Fk=F0(1+r)k+p/r(1+r)k-1, k=0,1,2N (13) Fk=FN(1+r)k-N-q/r(1+r)k-N-1, k=N+1,N+2,M (14) (13)中k=N,(14)中k=M且FM=0。则得关于r方程 (1+r)M-(1+q/p)(1+r)M-N+q/p=0 记x=1+r
26、,代入数据解出根x=1.00485,r=0.00485。对于35岁和45岁起投保情况,得月利率分别为0.00461和0.00413。b.金融公司的支付基金的流动 某金融机构为保证现金充分支付,设立一笔总额$540万元的基金,分开放置在位于A城和B城的两公司。发现每过一周,A城公司有10%支付基金流动到B公司,B公司则有12%支付基金流动到A城公司。此时,A城公司基金额为$260万,B城公司基金额$280万。按此规律,两公司支付基金数额变化趋势如何? 设此后第k周结算时,A和B基金数分别是ak和bk(万元),则有 ak+1=0.9ak+0.12bk, k=0,1,2 bk+1=0.1ak+0.8
27、8bk, k=0,1,2 (17) a0=260, b0=280 (18) 迭代可求得各周末时ak和bk的数值。表(4)给出1至12周末两公司基金数(单位:万美元): 表(4)kakbkkakbkkakbk1267.6000272.40005284.5716255.42849290.8536249.14642273.5280266.47206284.7658253.234210291.6658248.33423278.1518261.84827288.4773251.522711292.2993247.70074281.7584258.24168289v8123250.187712292.79
28、35247.2065 由表知,A城公司支付基金数在逐步增加,但增幅逐步减小; B城公司支付基金数则正好相反,但ak是否有上界,bk是否有下界?(附程序)5.问题与讨论(实验任务)(1)确定表2中二、三、四期贷款利率是如何产生的,推导出相应的一至五年万元贷款的还款额表。(2)制定一张完整的个人住房商业贷款利率和还款表,贷款期从一年至二十年。表中包含贷款期(年,月)、年利率、月利率月还款额和本息总额。(3)小李夫妇曾准备申请商业贷款10万元用于购置住房,每月还款880.66元,25年还清。此时,房产商介绍的一家金融机构提出:贷款10万元,每月还款440.33元,22年还清。贷款时预付4000元。试
29、分析两种情况哪个更合适?(4)从还款周期比较看出逐月还款比逐年还款付出较少本息总额则逐月还款情况如何?考虑是否有必要采取尽可能短的周期还款?6.实验中所用的程序和方法实验任务1对比表6.1和6.2可知:表一中的半年利率、一年利率、三年利率分别是表二中的一年、三年、五年利率。而表二中的利率呈线性关系。不难发现表一中的利率亦成线性关系。表二中的二三四年利率就是根据此线性关系产生。依据前面的同样的解差分方程的方法将前面2年期对应的数据分别改成1年、3年、4年和5年期,分别计算m1、m3、m4、m5,将得到的数据与表3进行对比,发现数据是相同的。这验证了表3。实验任务2程序如下:A0= 10000;s
30、dr= 6.12 6.39 6.66 7.20 7.56 7.56;sdk= 0.5 1 3 5 6 20;fdk= 1:9;fdr= 0.135*(fdk-1)+6.12;for k=10:20 fdk(k)= k; fdr(k)= 7.20; endm(1)= 0;s(1)= 10612.00;r= fdr/12/100;for k=2:20 m(k)= ( A0*r(k)*(1+r(k)(k*12) )/( (1+r(k)(k*12) - 1 ); s(k)= k*12*m(k);endtb= sprintf( 贷款%d元还款表nn,A0);tb= tb sprintf( 年 月 年利率
31、 月利率 月还款额 本息总额nn);for k=1:20 tb= tb sprintf( %2d %3d %6.4f %6.4f %8.4f %8.2fn,. k,12*k,fdr(k),fdr(k)/12,m(k),s(k);endtbplot(sdk,sdr,fdk,fdr)pausecloseclear all程序结果如下表:年月年利率月利率月还款额本息总额1126.12000.51000.000010612.002246.25000.5212444.356010664.543366.39000.5325305.989611015.634486.52500.5438237.2649113
32、88.715606.66000.5550196.411811784.716726.79500.5663169.507412204.537846.93000.5775150.584812649.138967.06500.5888136.660913119.4491087.20000.6000126.078213616.44101207.20000.6000117.141914057.02111327.20000.6000109.892414505.79121447.20000.6000103.907314962.65131567.20000.600098.894315427.52141687.2
33、0000.600094.644515900.28151807.20000.600091.004716380.84161927.20000.600087.859816869.08172047.20000.600085.122017364.88182167.20000.600082.722817868.12192287.20000.600080.608218378.66202407.20000.600078.734918896.38实验任务3函数文件: %函数返回值rate为实际享受到的贷款年利率,%参数A0贷款总额,m每次还款额,y贷款年数,c每年还款次数。程序1:A0=100000;m=880
34、.66;y=25;c=12;rate= ep6_f2(A0,m,y,c)k= y*c;p(1)= A0;p(2)= -m-A0;p(k+1)= m;x= roots(p);r1= (x-1)*c;n1= 1;for n= 1:k if r1(n) 0 r(n1)= r1(n); n1= n1+1; endrate= r;sprintf(还款年利率为%f,r);end程序二A0=96000;m=440.33;y=22;c=24;rate= ep6_f2(A0,m,y,c)k= y*c;p(1)= A0;p(2)= -m-A0;p(k+1)= m;x= roots(p);r1= (x-1)*c;n
35、1= 1;for n= 1:k if r1(n) 0 r(n1)= r1(n); n1= n1+1; endrate= r;sprintf(还款年利率为%f,r);end运行后1利率为0.0959,2利率为0。0969,所以并不优惠。实验任务4程序如下:文件1function out= ep6_f1(q,k)A0= 10000;fdk= 1:9;fdr= 0.135*(fdk-1)+6.12;for ii=10:20 fdk(ii)= ii; fdr(ii)= 7.20; endr= q*fdr(q)/k/100;m= ( A0*r*(1+r)k )/( (1+r)k - 1 );sprint
36、f( %d年期贷款,分%d次还款:,q,k),. sprintf( 每次还款%9.4f元, 本息总额为%9.2f元。,m,m*k)out= m*k;文件2s(1)= ep6_f1(2,2*1);s(2)= ep6_f1(2,2*2);s(3)= ep6_f1(2,2*4);s(4)= ep6_f1(2,2*12);s(5)= ep6_f1(2,2*12*4);s(6)= ep6_f1(2,2*12*8);s(7)= ep6_f1(2,2*365);plot(s)pauseclose程序结果为:2年期贷款,分2次还款: 每次还款5473.8673元, 本息总额为 10947.73元。2年期贷款,
37、分4次还款: 每次还款2698.4778元, 本息总额为 10793.91元。2年期贷款,分8次还款: 每次还款1339.5528元, 本息总额为 10716.42元。2年期贷款,分24次还款: 每次还款 444.3560元, 本息总额为 10664.54元。2年期贷款,分96次还款: 每次还款 110.8859元, 本息总额为 10645.04元。2年期贷款,分192次还款: 每次还款 55.4260元, 本息总额为 10641.79元。2年期贷款,分730次还款: 每次还款 14.5745元, 本息总额为 10639.39元。分析运行结果可知,综合考虑还款因素与人力因素,按月还款最为符合实
38、际情况。(四、实验结果:3、对实验任务3来说,看似第二种方法花的总钱数少,但实际上第一种情况对小李夫妇更优惠。4、对还款周期来说,从实验结果来看,缩短还款周期确定所付的本息总额在逐渐减少,但减少的幅度会越来越少,最后时,几乎上下只差几元钱,这显然麻烦,所以有时不必采取更短周期,只需按月就行。五、实验总结: 个人住房抵押贷款和其他金融问题这个数学实验比较贴近现实,和我们的日常生活息息相关,所以在做这个实验的时候我们感到比较熟悉。从这个实验可以看出,现在的保险一般都没有在银行存款的利息高。最后,我们凭着一些生活中的经验进行了一些简单的分析,希望老师能指出我们实验中的错误。通过互相的配合,我们在实验中积累了不少经验,也会给我们进行以后的数学实验和数学建模打下更好的基础。