运筹学期末试卷A卷答案-01-23.doc

上传人:豆**** 文档编号:24142583 上传时间:2022-07-03 格式:DOC 页数:8 大小:273KB
返回 下载 相关 举报
运筹学期末试卷A卷答案-01-23.doc_第1页
第1页 / 共8页
运筹学期末试卷A卷答案-01-23.doc_第2页
第2页 / 共8页
点击查看更多>>
资源描述

《运筹学期末试卷A卷答案-01-23.doc》由会员分享,可在线阅读,更多相关《运筹学期末试卷A卷答案-01-23.doc(8页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、【精品文档】如有侵权,请联系网站删除,仅供学习与交流运筹学期末试卷A卷答案-01-23.精品文档. 运筹学 期末试卷(A卷)系别: 工商管理学院 专业: 工商管理 考试日期: 年 月 日姓名: 学号: 成 绩: 112分某公司正在制造两种产品:产品I和产品II,每天的产量分别为30个和120个,利润分别为500元/个和400元/个。公司负责制造的副总经理希望了解是否可以通过改变这种产品的数量而提高公司的利润。公司各个车间的加工能力和制造单位产品所需的加工工时如下表:车间产品I产品II车间的加工能力(每天加工工时数12030020354032244041215300(1) 假设生产的全部产品都能

2、销售出去,试建立使公司获利最大的生产计划模型。(2) 用图解法求出最优解。 P25 No7212分 某超市实行24小时营业,各班次所需服务员和管理人员如下:班次时间所需人数班次时间所需人数16:0010:0050418:0022:0070210:0014:0060522:002:0030314:00-18:004062:006:0010设服务员和管理人员分别在各时间段开始上班,连续工作8小时,问超市应该如何安排使得超市用人总数最少?(1) 建立线性规划模型(只建模不求具体解);(2) 写出基于Lindo 软件的源程序(代码)。310分设xA,xB分别代表购买股票A和股票B的数量,f代表投资风险

3、指数,建立线性规划模型如下:投资总额120万元目标函数:Min f=8xA+3xB约束条件:投资回报至少6万元股票B投资不少于30万元购买量非负利用教材附带软件进行求解,结果如下: *最优解如下* 目标函数最优值为 : 62000 变量 最优解 相差值 x1 4000 0 x2 10000 0 约束 松弛/剩余变量 对偶价格 1 0 .057 2 0 -2.167 3 700000 0 目标函数系数范围 : 变量 下限 当前值 上限 x1 3.75 8 无上限 x2 无下限 3 6.4 常数项数范围 : 约束 下限 当前值 上限 1 780000 1200000 1500000 2 48000

4、 60000 102000 3 无下限 300000 1000000试回答下列问题:(1) 在这个最优解中,购买股票A和股票B的数量各为多少?这时投资风险是多少?(2) 上述求解结果中松弛/剩余变量的含义是什么?(3) 当目标函数系数在什么范围内变化时,最优购买计划不变?(4) 请对右端常数项范围的上、下限给予具体解释,应如何应用这些数据?(5) 当每单位股票A的风险指数从8降为6,而每单位股票B的风险指数从3升为5时,用百分一百法则能否断定其最优解是否发生变化?为什么?46分设有矩阵对策,其中,求矩阵对策的最优纯策略(要求图示)。W56分某建筑工地每月需求水泥1200吨,每吨定价为1500元

5、,不允许缺货。设每吨的年存储费为定价的2%,每次订货费为1800元,每年的工作日为365天,请求出:(1)经济订货批量;(2)每年的订货次数及两次订货之间的间隔。618分用单纯形法求解如下线性规划的最优解W7.18分根据以下项目工序明细表工序ABCDEFG紧前工序-A,BA,BBCD,E工序时间(天)2454324(1) 画出计划网络图;(2) 计算每个工序的最早开始、最晚开始时间、最早完成时间、最晚完成时间以及工程总时间;(要求图示或表格表示)(3) 找出关键路线和关键工序。8.18分某生产商在进行生产合作伙伴选择时采用AHP方法进行选择,构建了两两判断矩阵R如下,试计算其最大特征值及特征向

6、量,并检验其一致性。AC1C2C3C4C5C6C1183524C21/811/41/21/51C31/34131/21/2C41/521/311/51/3C51/252512C61/41231/21试卷内容完毕参考答案与评分标准1. 12分解:设公司安排生产产品I、产品II数量分别为x1个,x2个,获取利润为Z元,那么,工厂获利为Z=500x1+400x2.(1) 工厂获利最大的生产计划模型为:目标:max Z=500x1+400x2.约束条件: 2x1 300 3x2 540 2x1 + 2x2 440 1.2x1+1.5x2 300X1,X20(2) 应用图解法求解:X1X21501502

7、00( 150,70) Max: 103000从图示可知:最优解为 X1=150,x2=70, f(max)=500*150+400*70=103000.评分标准: (1) 建立模型6分,目标2分,约束正确4分; (2)图解法求最优6分,其中图示正确得3分,求解正确得3分2. 12分解:(1) 建立线性规划模型:设Z代表总人数,xi代表第i班次时开始上班的职工人数,显然第i班的工作员工包括第i-1班开始上班的人数和第i班次开始上班的人数。那么,可建立如下规划模型:目标: min Z=x1+x2+x3+x4+x5+x6约束条件: X1+x6= 50 X2+x1= 60X3+x2= 40X4+x3

8、= 70X5+x4= 30X6+x5= 10 xi=0,且为整数,i=1,2, 6 (2) 基于Lindo 软件的的源程序(代码)如下: min x1+x2+x3+x4+x5+x6 s.t. X1+x6= 50 X2+x1= 60X3+x2= 40X4+x3= 70X5+x4= 30X6+x5= 10 End Gin 6评分: (1) 建立模型:7分;目标:1分,约束条件:6分 (2) 给出源代码,5分,其中,“Gin 6” 2分3. 10 分答: (1) 该模型的最优解是:购买股票A和股票B的数量分别为4000,10000,投资风险是62000;(2) 投资总额约束中没有使用的数量称为松弛量

9、,本题的松弛量为0,投资回报约束中超过60000的部分,称为剩余量,本约束的剩余量为0;约束3中股票B的投资额超过30万元部分也称为剩余量,剩余值为70000。(3) 当C2不变,C1满足:3.75 C1 时,最优投资计划不变;或C1不变,而C2满足:- C2 6.4时,最优投资计划也不变。(4) 当右端系数b1(780000,1500000),而b2,b3不变时,b1对偶价格不变,或b1,b3不变,而b2(48000,102000)时, b2对偶价格也不变。或b1,b2不变,而b3(-,1000000)时, b3对偶价格也不变。工作中可以根据对偶价格的情况,进行选择,以提高工作效率。(5)

10、不能。理由:目标系数的变化为:(8-6)/8-3.75)*100%+(5-3)/(6.4-3)*100%=106.47%,超过了100%,根据百分百法则的充分条件,显然不能用它来判断最优解的变化。评分:每一步各2分4. 6分解:已知矩阵对策,其中,,通过赢得矩阵于是有是对策G的解,VG=1 .评分:图示4分,结论2分.5. 6分某建筑工地每月需求水泥1200吨,每吨定价为1500元,不允许缺货。设每吨的年存储费为定价的2%,每次订货费为1800元,每年的工作日为365天,请求出:(1)经济订货批量;(2)每年的订货次数及两次订货之间的间隔。解:水泥的年需求量D=12*1200=14400吨,单

11、位存储费:C1=1500*2%=30,每次订货费C3=1800,那么(1)最优订货量Q*为:每年订货与存贮的总费用:(2)每年的订货次数为:故两次订货的间隔时间为评分:经济订货批量、每年的订货次数及两次订货之间的间隔各2分。6. 18分解答:(1) 先将模型化为标准型:(2)单纯形求解:迭代次数基变量CBX1X2X3S1S2S3b比值12850000S103211002020/3=6.67S201110101111/1=11S3012410014848/12=4Zj000000Z=0j= Cj-Zj12850001S10013/410-1/488S2002/311/1201-1/12710.5

12、X11211/31/12001/12412Zj1241001Z=48j= Cj-Zj04400-12X28013/410-1/4832/3S20005/12-2/311/125/34X11210-1/6-1/301/64/3-Zj1284400Z=80j= Cj-Zj001-4003X2801011/5-9/5-2/55X35001-8/512/51/54X112100-3/52/51/52Zj128412/512/51/5Z=84j= Cj-Zj000-12/5-12/5-1/5表格中所有检验系数小于等于0,得到模型的最优解为:X1=2,x2=5,X3=4,s1=s2=S3=0, f(max

13、)=12*2+8*5+5*4=84评分标准:(1)标准化:3分;(2)求解过程每步3分*4=12分,总结:3分7. 18分解: (1)项目的网络图如下:fV3V2V4V6V12g4c243aeV5db45(2)计算工序的最早开始时间、最迟开始时间和总时差f 9,11 V3V2V4V6V122,435,8a0,2V544,855,10b0,4C4,9d4,8g8,1240,4e4,748,12210,12V1根据上图可得各工序的最早开始时间、最迟开始时间和时差如下:工序最早开始时间最迟开始时间最早完成时间最晚完成时间时差是否否关键工序A02242YesB00440NoC459101NoD4488

14、0YesE45781NoF91011121NoG8812120Yes(3)本项目的关键工序有B、D、G,关键路线为BDG.工程完成的时间是12天。评分标准:第(1)步:6分;第(2)步:9分;第(3)步3分。8. 18分解: (1)先计算C矩阵的特征向量:选用方根法:令,对向量作规范化处理,有: ,那么,所求特征向量为:(2)计算最大特征值:由于,因此C判断矩阵的最大特征根(3)一致性检验: ,查表RI=1.26, 故 ,即一致性符合要求。若采用和积法求解: 特征向量=0.390,0.0534 0.130, 0.059,0.2365, 0.131 T评分标准:(1)特征向量: 10分 ;(2)最大特征值:5分;(3)一致性检验:3分。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁