《平面解析几何初步一轮复习-(有答案).doc》由会员分享,可在线阅读,更多相关《平面解析几何初步一轮复习-(有答案).doc(93页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date平面解析几何初步一轮复习-(有答案)高考资源网第四章 平面解析几何初步第1课时 直线的方程基础过关1倾斜角:对于一条与x轴相交的直线,把x轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角叫做直线的倾斜角当直线和x轴平行或重合时,规定直线的倾斜角为0倾斜角的范围为_斜率:当直线的倾斜角90时,该直线的斜率即ktan;当直线的倾斜角等于90时,直线的斜率不存在2过两
2、点P1(x1,y1),P2(x2,y2)(x1x2)的直线的斜率公式 若x1x2,则直线的斜率不存在,此时直线的倾斜角为903直线方程的五种形式名称方程适用范围斜截式点斜式两点式截距式一般式典型例题例1. 已知直线(2m2m3)x(m2m)y4m1 当m 时,直线的倾斜角为45当m 时,直线在x轴上的截距为1 当m 时,直线在y轴上的截距为 当m 时,直线与x轴平行当m 时,直线过原点解:(1) 1 2或 或2 变式训练1.(1)直线3yx2=0的倾斜角是 ( )A30 B60 C120 D150(2)设直线的斜率k=2,P1(3,5),P2(x2,7),P(1,y3)是直线上的三点,则x2,
3、y3依次是 ( )A3,4 B2,3 C4,3 D4,3(3)直线l1与l2关于x轴对称,l1的斜率是,则l2的斜率是 ( )A B C D(4)直线l经过两点(1,2),(3,4),则该直线的方程是 解:(1)D提示:直线的斜率即倾斜角的正切值是(2)C提示:用斜率计算公式(3)A提示:两直线的斜率互为相反数(4)2y3x1=0提示:用直线方程的两点式或点斜式例2. 已知三点A(1,-1),B(3,3),C(4,5).求证:A、B、C三点在同一条直线上.证明 方法一 A(1,-1),B(3,3),C(4,5),kAB=2,kBC=2,kAB=kBC,A、B、C三点共线.方法二 A(1,-1)
4、,B(3,3),C(4,5),|AB|=2,|BC|=,|AC|=3,|AB|+|BC|=|AC|,即A、B、C三点共线.方法三 A(1,-1),B(3,3),C(4,5),=(2,4),=(1,2),=2.又与有公共点B,A、B、C三点共线.变式训练2. 设a,b,c是互不相等的三个实数,如果A(a,a3)、B(b,b3)、C(c,c3)在同一直线上,求证:a+b+c=0.证明 A、B、C三点共线,kAB=kAC,化简得a2+ab+b2=a2+ac+c2,b2-c2+ab-ac=0,(b-c)(a+b+c)=0,a、b、c互不相等,b-c0,a+b+c=0.例3. 已知实数x,y满足y=x2
5、-2x+2 (-1x1).试求:的最大值与最小值.解: 由的几何意义可知,它表示经过定点P(-2,-3)与曲线段AB上任一点(x,y)的直线的斜率k,如图可知:kPAkkPB,由已知可得:A(1,1),B(-1,5),k8,故的最大值为8,最小值为.变式训练3. 若实数x,y满足等式(x-2)2+y2=3,那么的最大值为( )A. B.C. D.答案D例4. 已知定点P(6, 4)与直线l1:y4x,过点P的直线l与l1交于第一象限的Q点,与x轴正半轴交于点M求使OQM面积最小的直线l的方程解:Q点在l1: y4x上,可设Q(x0,4x0),则PQ的方程为:令y0,得:x(x01), M(,0
6、) SOQM4x010 10(x01)240当且仅当x01即x02取等号,Q(2,8)PQ的方程为:,xy100变式训练4.直线l过点M(2,1),且分别交x轴y轴的正半轴于点A、B,O为坐标原点(1)当AOB的面积最小时,求直线l的方程;(2)当取最小值时,求直线l的方程解:设l:y1k(x2)(k0)则A(2,0),B(0,12k)由S(12k)(2)(44k)4当且仅当4k,即k时等号成立AOB的面积最小值为4此时l的方程是x2y40|MA|MB|24当且仅当k即k1时等号成立此时l的方程为xy30(本题也可以先设截距式方程求解)小结归纳1直线方程是表述直线上任意一点M的坐标x与y之间的
7、关系式,由斜率公式可导出直线方程的五种形式这五种形式各有特点又相互联系,解题时具体选取哪一种形式,要根据直线的特点而定2待定系数法是解析几何中常用的思想方法之一,用此方法求直线方程,要注意所设方程的适用范围如:点斜式、斜截式中首先要存在斜率,截距式中横纵截距存在且不为0,两点式的横纵坐标不能相同等(变形后除处)3在解析几何中,设点而不求,往往是简化计算量的一个重要方法.4在运用待定数法设出直线的斜率时,就是一种默认斜率存在,若有不存在的情况时,就会出现解题漏洞,此时就要补救:较好的方法是看图,数形结合来找差距.第2课时 直线与直线的位置关系基础过关(一)平面内两条直线的位置关系有三种_1当直线
8、不平行坐标轴时,直线与直线的位置关系可根据下表判定直线条件关系l1:yk1xb1l2:yk2xb2l1:A1xB1yC10l2:A2xB2yC20平行重合相交(垂直)2当直线平行于坐标轴时,可结合图形判定其位置关系(二)点到直线的距离、直线与直线的距离1P(x0,y0)到直线AxByC0 的距离为_2直线l1l2,且其方程分别为:l1:AxByC10 l2:AxByC20,则l1与l2的距离为 (三)两条直线的交角公式若直线l1的斜率为k1,l2的斜率为k2,则1直线l1到l2的角满足 2直线l1与l2所成的角(简称夹角)满足 (四)两条直线的交点:两条直线的交点的个数取决于这两条直线的方程组
9、成的方程组的解的个数(五)五种常用的直线系方程. 过两直线l1和l2交点的直线系方程为A1xB1yC1(A2xB2yC2)0(不含l2). 与直线ykxb平行的直线系方程为ykxm (mb). 过定点(x0, y0)的直线系方程为yy0k(xx0)及xx0. 与AxByC0平行的直线系方程设为AxBym0 (mC). 与AxByC0垂直的直线系方程设为BxAyC10 (AB0).典型例题例1. 已知直线l1:ax+2y+6=0和直线l2:x+(a-1)y+a2-1=0,(1)试判断l1与l2是否平行;(2)l1l2时,求a的值.解(1)方法一 当a=1时,l1:x+2y+6=0,l2:x=0,
10、l1不平行于l2;当a=0时,l1:y=-3,l2:x-y-1=0,l1不平行于l2;当a1且a0时,两直线可化为l1:y=-3,l2:y=-(a+1),l1l2,解得a=-1, 综上可知,a=-1时,l1l2,否则l1与l2不平行. 方法二 由A1B2-A2B1=0,得a(a-1)-12=0,由A1C2-A2C10,得a(a2-1)-160, l1l2a=-1, 故当a=-1时,l1l2,否则l1与l2不平行.(2)方法一 当a=1时,l1:x+2y+6=0,l2:x=0,l1与l2不垂直,故a=1不成立.当a1时,l1:y=-x-3,l2:y=-(a+1),由=-1a=. 方法二 由A1A
11、2+B1B2=0,得a+2(a-1)=0a=.变式训练1.若直线l1:ax+4y-20=0,l2:x+ay-b=0,当a、b满足什么条件时,直线l1与l2分别相交?平行?垂直?重合?解:当a=0时,直线l1斜率为0,l2斜率不存在,两直线显然垂直。当a0时,分别将两直线均化为斜截式方程为:l1:y= x+5,l2:y= x+ 。(1)当 ,即a2时,两直线相交。(2)当 = 且5 时,即a=2且b10或a= 2且b10时,两直线平行。(3)由于方程( )( )= 1无解,故仅当a=0时,两直线垂直。(4)当 = 且5= 时,即a=2且b=10或a= 2且b=10时,两直线重合例2. 已知直线l
12、经过两条直线l1:x2y0与l2:3x4y100的交点,且与直线l3:5x2y30的夹角为,求直线l的方程解:由解得l1和l2的交点坐标为(2,1),因为直线l3的斜率为k3,l与l3的夹角为,所以直线l的斜率存在. 设所求直线l的方程为y1k(x2)则tan1k或k,故所求直线l的方程为y1(x2)或y1(x2)即7x3y110或3x7y130变式训练2. 某人在一山坡P处观看对面山顶上的一座铁塔,如图所示,塔高BC=80(米),塔所在的山高OB=220(米),OA=200(米),图中所示的山坡可视为直线l,且点P在直线l上,l与水平地面的夹角为,tan=.试问,此人距水平地面多高时,观看塔
13、的视角BPC最大(不计此人的身高)?解 如图所示,建立平面直角坐标系,则A(200,0),B(0,220),C(0,300).直线l的方程为y=(x-200)tan,则y=.设点P的坐标为(x,y),则P(x, )(x200).由经过两点的直线的斜率公式kPC=,kPB=.由直线PC到直线PB的角的公式得tanBPC= (x200).要使tanBPC达到最大,只需x+-288达到最小,由均值不等式x+-2882-288,当且仅当x=时上式取得等号.故当x=320时,tanBPC最大.这时,点P的纵坐标y为y=60.由此实际问题知0BPC,所以tanBPC最大时,BPC最大.故当此人距水平地面6
14、0米高时,观看铁塔的视角BPC最大.例3. 直线y2x是ABC中C的平分线所在的直线,若A、B坐标分别为A(4,2)、B(3,1),求点C的坐标并判断ABC的形状解:因为直线y2x是ABC中C的平分线,所以CA、CB所在直线关于y2x对称,而A(4, 2)关于直线y2x对称点A1必在CB边所在直线上设A1(x1,y1)则 得即A1(4, 2)由A1(4, 2),B(3, 1)求得CB边所在直线的方程为:3xy100又由 解得C(2, 4)又可求得:kBC3,kACkBCkAC1,即ABC是直角三角形变式训练3.三条直线l1:x+y+a=0,l2:x+ay+1=0,l3:ax+y+1=0能构成三
15、角形,求实数a的取值范围。解:aR且a1,a-2(提示:因三条直线能构成三角形,故三条直线两两相交且不共点,即任意两条直线都不平行且三线不共点。(1)若l1、l2、l3相交于同一点,则l1与l2的交点(-a-1,1)在直线l3上,于是a(-a-1)+1+1=0,此时a=1或a= -2。(2)若l1l2,则-1 = - ,a=1。(3)若l1l3,则-1 = - a,a=1。(4)若l2l3,则- = -a,a= 1。)例4. 设点A(3,5)和B(2,15),在直线l:3x4y40上找一点p,使为最小,并求出这个最小值解:设点A关于直线l的对称点A的坐标为(a,b),则由AAl和AA被l平分,
16、则解之得a3,b3,A(3,3)(|PA|PB|)min|AB|5kAB18AB的方程为y318(x3)解方程组得P(,3)变式训练4:已知过点A(1,1)且斜率为m(m0)的直线l与x、y轴分别交于P、Q两点,过P、Q作直线2xy0的垂线,垂足分别为R、S,求四边形PRSQ的面积的最小值解:设l的方程为y1m(x1),则P(1,0),Q(0,1m)从则直线PR:x2y0;直线QS:x2y2(m1)0 又PRQS | RS |又| PR |,| QS |而四边形PRSQ为直角梯形, SPRSQ()(m)2(2)23.6 四边形PRSQ的面积的最小值为3.6小结归纳1处理两直线位置关系的有关问题
17、时,要注意其满足的条件如两直线垂直时,有两直线斜率都存在和斜率为O与斜率不存在的两种直线垂直2注意数形结合,依据条件画出图形,充分利用平面图形的性质和图形的直观性,有助于问题的解决3利用直线系方程可少走弯路,使一些问题得到简捷的解法4解决对称问题中,若是成中心点对称的,关键是运用中点公式,而对于轴对称问题,一般是转化为求对称点,其关键抓住两点:一是对称点的连线与对称轴垂直;二是两对称点的中点在对称轴上,如例4基础过关第3课时 线性规划1二元一次不等式表示的平面区域 一般地,二元一次不等式AxByC0在平面直角坐标系中表示直线AxByC0某一侧的所有点组成的平面区域(半平面)不含边界线,不等式A
18、xByC0所表示的平面区域(半平面)包括边界线 对于直线AxByC0同一侧的所有点(x、y)使得AxByC的值符号相同因此,如果直线AxByC0一侧的点使AxByC0,另一侧的点就使AxByC0(或AxByC0)所表示的平面区域时,只要在直线AxByC0的一侧任意取一点(x0,y0),将它的坐标代入不等式,如果该点的坐标满足不等式,不等式就表示该点所在一侧的平面区域;如果不满足不等式,就表示这个点所在区域的另一侧平面区域 由几个不等式组成的不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分2线性规划 基本概念名 称意 义线性约束条件由x、y的一次不等式(或方程)组成的不等式组,是对x
19、、y的约束条件目标函数关于x、y的解析式如:z2xy,zx2y2等线性目标函数关于x、y的一次解析式可行解满足线性约束条件x、y的解(x,y)叫做可行解可行域所有可行解组成的集合叫做可行域最优解使目标函数达到最大值或最小值的可行解线性规划问题求线性目标函数在线性约束条件下的最大值或最小值的问题 用图解法解决线性规划问题的一般步骤: 设出所求的未知数; 列出约束条件(即不等式组); 建立目标函数; 作出可行域和目标函数的等值线; 运用图解法即平行移动目标函数等值线,求出最优解(有些实际问题应注意其整解性)典型例题例1. 若ABC的三个顶点为A(3,1),B(1,1),C(1,3),写出ABC区域
20、(含边界)表示的二元一次不等式组解:由两点式得AB、BC、CA直线的方程并化简得AB:x2y10,BC:xy20,CA:2xy50结合区域图易得不等式组为变式训练1: ABC的三个顶点为A(2,4)、B(1,2)、C(1,0),则ABC的内部(含边界)可用二元一次不等式组表示为 ACyxB例2. 已知x、y满足约束条件 分别求: z2xy z4x3y zx2+y2的最大值、最小值?解:在直角坐标系中作出表示不等式组的公共区域如图阴影部分其中A(4,1),B(1,6),C(3,2)(1) 作与直线2xy0平行的直线l1:2xyt,则当l1经过点A时,t取最大,l1经过点B时,t取最小zmax9
21、zmin13(2) 作与直线4x3y0平行的直线l2:4x3yt,则当l2过点C时,t最小,l2过点B时,t最大zmax14 zmin18(3) 由zx2y2,则表示点(x,y)到(0,0)的距离,结合不等式组表示的区域知点B到原点的距离最大,当(x,y)为原点时距离为0zmax37 zmin0变式训练2:给出平面区域如下图所示,目标函数taxy,(1) 若在区域上有无穷多个点(x,y)可使目标函数t取得最小值,求此时a的值(2) 若当且仅当x,y时,目标函数t取得最小值,求实数a的取值范围?x0A(1,0)C( , )B(0,1)y解:(1)由taxy得yaxt要使t取得最小时的(x,y)有
22、无穷多个,则yaxt与AC重合akAC(2)由KAC a KBC 得 a0),圆心为 ,半径r 3二元二次方程Ax2BxyCy2DxEyF0表示圆的方程的充要条件是 4圆C:(xa)2(yb)2r2的参数方程为_x2y2r2的参数方程为_5过两圆的公共点的圆系方程:设C1:x2y2D1xE1yF10,C2:x2y2D2xE2yF20,则经过两圆公共点的圆系方程为 典型例题例1. 根据下列条件,求圆的方程(1) 经过A(6,5),B(0,1)两点,并且圆心在直线3x10y90上(2) 经过P(2,4),Q(3,1)两点,并且在x轴上截得的弦长为6解:(1)AB的中垂线方程为3x2y150由 解得
23、 圆心为C(7,3),半径r故所求圆的方程为(x7)2(y3)265(2)设圆的一般方程为x2y2DxEyF0将P、Q两点坐标代入得令y0得x2DxF0由弦长|x1x2|6得D24F36 解可得D2,E4,F8或D6,E8,F0故所求圆的方程为x2y22x4y80或x2y26x8y0变式训练1:求过点A(2,3),B(2,5),且圆心在直线x2y3=0上的圆的方程由A(2,3),B(2,5),得直线AB的斜率为kAB= = ,线段AB的中点为(0,4),线段AB的中垂线方程为y4=2x,即y2x 4=0,解方程组得圆心为(1,2),根据两点间的距离公式,得半径r=所求圆的方程为(x1)2(y2
24、)2=10例2. 已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P,Q两点,且OPOQ(O为坐标原点),求该圆的圆心坐标及半径.解 方法一 将x=3-2y,代入方程x2+y2+x-6y+m=0,得5y2-20y+12+m=0.设P(x1,y1),Q(x2,y2),则y1、y2满足条件:y1+y2=4,y1y2=OPOQ,x1x2+y1y2=0.而x1=3-2y1,x2=3-2y2.x1x2=9-6(y1+y2)+4y1y2.m=3,此时0,圆心坐标为,半径r=.方法二 如图所示,设弦PQ中点为M,O1MPQ,.O1M的方程为:y-3=2,即:y=2x+4.由方程组解得M的坐标为(
25、-1,2).则以PQ为直径的圆可设为(x+1)2+(y-2)2=r2.OPOQ,点O在以PQ为直径的圆上.(0+1)2+(0-2)2=r2,即r2=5,MQ2=r2.在RtO1MQ中,O1Q2=O1M2+MQ2.(3-2)2+5=m=3.半径为,圆心为.方法三 设过P、Q的圆系方程为x2+y2+x-6y+m+(x+2y-3)=0.由OPOQ知,点O(0,0)在圆上.m-3=0,即m=3.圆的方程可化为x2+y2+x-6y+3+x+2y-3=0即x2+(1+)x+y2+2(-3)y=0.圆心M,又圆在PQ上.-+2(3-)-3=0,=1,m=3.圆心为,半径为.变式训练2:已知圆C:(x-1)2
26、+(y-2)2=25及直线l:(2m+1)x+(m+1)y=7m+4 (mR).(1)证明:不论m取什么实数,直线l与圆C恒相交;(2)求直线l被圆C截得的弦长的最短长度及此时的直线方程.(1)证明 直线l可化为x+y-4+m(2x+y-7)=0,即不论m取什么实数,它恒过两直线x+y-4=0与2x+y-7=0的交点.两方程联立,解得交点为(3,1),又有(3-1)2+(1-2)2=525,点(3,1)在圆内部,不论m为何实数,直线l与圆恒相交.(2)解 从(1)的结论和直线l过定点M(3,1)且与过此点的圆C的半径垂直时,l被圆所截的弦长|AB|最短,由垂径定理得|AB|=2=此时,kt=-
27、,从而kt=-=2.l的方程为y-1=2(x-3),即2x-y=5.例3. 知点P(x,y)是圆(x+2)2+y2=1上任意一点.(1)求P点到直线3x+4y+12=0的距离的最大值和最小值;(2)求x-2y的最大值和最小值;(3)求的最大值和最小值.解 (1)圆心C(-2,0)到直线3x+4y+12=0的距离为d=.P点到直线3x+4y+12=0的距离的最大值为d+r=+1=,最小值为d-r=-1=.(2)设t=x-2y, 则直线x-2y-t=0与圆(x+2)2+y2=1有公共点.1.-2t-2,tmax=-2,tmin=-2-.(3)设k=,则直线kx-y-k+2=0与圆(x+2)2+y2
28、=1有公共点,1.k,kmax=,kmin=.变式训练3:已知实数x、y满足方程x2+y2-4x+1=0.(1)求y-x的最大值和最小值;(2)求x2+y2的最大值和最小值.解 (1)y-x可看作是直线y=x+b在y轴上的截距,当直线y=x+b与圆相切时,纵截距b取得最大值或最小值,此时,解得b=-2.所以y-x的最大值为-2+,最小值为-2-.(2)x2+y2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点与圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为=2,所以x2+y2的最大值是(2+)2=7+4,x2+y2的最小值是(2-)2=7-4.例4. 设圆满足:截y轴
29、所得的弦长为2;被x轴分成两段圆弧,其弧长的比为31在满足条件的所有圆中,求圆心到直线l:x2y=0的距离最小的圆的方程。解法一设圆的圆心为P(a,b),半径为r,则点P到x轴y轴的距离分别为b、a。由题设条件知圆P截x轴所得的劣弧所对的圆心角为90,圆P截x轴所得的弦长为r,故r2=2b2又圆P截y轴所得的弦长为2,所以有r2=a21,从而得2b2=a21点P到直线x2y=0的距离为d=,5d2=(a2b)2=a24b24ab= 2a22b24ab1=2(ab)211当且仅当a=b时取等号,此时,5d2=1, d取得最小值由a=b及2b2=a21得,进而得r2=2所求圆的方程为(x1)2(y
30、1)2=2或(x1)2(y1)2=2解法二同解法一,得d=,所以a2b= da2=4b24bd5d2,将a2=2b21代入整理得2b24bd5d21=0 ()把()看成关于b的二次方程,由于方程有实数根,故0即8(5d21)0, 5d21可见5d2有最小值1,从而d有最小值,将其代入()式得2b24b2=0, b= 1, r2=2b2=2, a2=2b21=1, a= 1由a2b=1知a、b同号故所求圆的方程为(x1)2(y1)2=2或(x1)2(y1)2=2变式训练4:如图,图O1和圆O2的半径都等于1,O1O24,过动点P分别作圆O1和圆O2的切线PM、PN(M、N为切点),使得PMPN,试建立平面直角坐标系,并求动点P的轨迹方程O1O2NMPOxy22O1O2NMP解:以O1、O2的中点为原点,O1O2所在的直线为x轴,建立平面直角坐标系,则O1(2, 0)、O2(2, 0)如图:由PMPN得PM22PN2 PO1212(PO221),设P(x,y) (x2)2y212(x2)2y21即(x6)2y233为所求点P的轨迹方程小结归纳1本节主要复习了圆的轨迹方程,要明确:必须具备三个独立条件,才能确定一个圆的方程