中考数学压轴题十大类型经典题目打印版.doc

上传人:豆**** 文档编号:24002865 上传时间:2022-07-03 格式:DOC 页数:269 大小:2.22MB
返回 下载 相关 举报
中考数学压轴题十大类型经典题目打印版.doc_第1页
第1页 / 共269页
中考数学压轴题十大类型经典题目打印版.doc_第2页
第2页 / 共269页
点击查看更多>>
资源描述

《中考数学压轴题十大类型经典题目打印版.doc》由会员分享,可在线阅读,更多相关《中考数学压轴题十大类型经典题目打印版.doc(269页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date中考数学压轴题十大类型经典题目打印版第一讲 中考压轴题十大类型之动点问题(2011吉林)如图,梯形ABCD中,ADBC,BAD=90,CEAD于点E,AD=8cm,BC=4cm,AB=5cm从初始时刻开始,动点P,Q 分别从点A,B同时出发,运动速度均为1cm/s,动点P沿A-B-C-E方向运动,到点E停止;动点Q沿B-C-E-D方向运动,到点D停止,设运动时间为s,

2、PAQ的面积为y cm2,(这里规定:线段是面积为0的三角形)解答下列问题:(1) 当x=2s时,y=_ cm2;当=s时,y=_ cm2(2)当5 x 14时,求y与x之间的函数关系式(3)当动点P在线段BC上运动时,求出S梯形ABCD时的值(4)直接写出在整个运动过程中,使PQ与四边形ABCE的对角线平行的所有x的值(2007河北)如图,在等腰梯形ABCD中,ADBC,AB=DC=50,AD=75,BC=135点P从点B出发沿折线段BA-AD-DC以每秒5个单位长的速度向点C匀速运动;点Q从点C出发沿线段CB方向以每秒3个单位长的速度匀速运动,过点Q向上作射线QKBC,交折线段CD-DA-

3、AB于点E点P、Q同时开始运动,当点P与点C重合时停止运动,点Q也随之停止设点P、Q运动的时间是t秒(t0)(1)当点P到达终点C时,求t的值,并指出此时BQ的长;(2)当点P运动到AD上时,t为何值能使PQDC?(3)设射线QK扫过梯形ABCD的面积为S,分别求出点E运动到CD、DA上时,S与t的关系式;(4)PQE能否成为直角三角形?若能,写出t的取值范围;若不能,请说明理由备用图 (2008河北)如图,在中,C=90,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点点从点出发沿折线DE-EF-FC-CD以每秒7个单位长的速度匀速运动;点从点出发沿方向以每秒4个单位长的速度匀

4、速运动,过点作射线,交折线BC-CA于点点同时出发,当点绕行一周回到点时停止运动,点也随之停止设点运动的时间是秒()(1)两点间的距离是 ;(2)射线能否把四边形分成面积相等的两部分?若能,求出的值若不能,说明理由;(3)当点运动到折线上,且点又恰好落在射线上时,求的值;(4)连结,当时,请直接写出的值(2011山西太原)如图,在平面直角坐标系中,四边形OABC是平行四边形直线经过O、C两点点A的坐标为(8,0),点B的坐标为(11,4),动点P在线段OA上从点O出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿ABC的方向向点C运动,过点P作PM垂直于x轴,与折线

5、O-C-B相交于点M当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒(),MPQ的面积为S(1)点C的坐标为_,直线的解析式为_(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围(3)试求题(2)中当t为何值时,S的值最大,并求出S的最大值(4)随着P、Q两点的运动,当点M在线段CB上运动时,设PM的延长线与直线相交于点N试探究:当t为何值时,QMN为等腰三角形?请直接写出t的值1. (2011四川重庆)如图,矩形ABCD中,AB6,BC2,点O是AB的中点,点P在AB的延长线上,且BP3一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速

6、运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点出发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动在点E、F的运动过程中,以EF为边作等边EFG,使EFG和矩形ABCD在射线PA的同侧,设运动的时间为t秒(t0)(1)当等边EFG的边FG恰好经过点C时,求运动时间t的值;(2)在整个运动过程中,设等边EFG和矩形ABCD重叠部分的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使AOH是等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由备用图1备用图

7、2三、测试提高 1 (2011山东烟台)如图,在直角坐标系中,梯形ABCD的底边AB在x轴上,底边CD的端点D在y轴上直线CB的表达式为,点A、D的坐标分别为(4,0),(0,4)动点P自A点出发,在AB上匀速运动动点Q自点B出发,在折线BCD上匀速运动,速度均为每秒1个单位当其中一个动点到达终点时,它们同时停止运动设点P运动t(秒)时,OPQ的面积为S(不能构成OPQ的动点除外)(1)求出点B、C的坐标;(2)求S随t变化的函数关系式;(3)当t为何值时S有最大值?并求出最大值 备用图1. (2011浙江温州)如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(-4,0),点B的坐标为(0

8、,b)(b0)P是直线AB上的一个动点,作PCx轴,垂足为 C,记点P关于y轴的对称点为P (点P不在y轴上),连结P P,PA,PC,设点P的横坐标为a(1) 当b=3时, 直线AB的解析式; 若点P的坐标是(-1,m),求m的值;(2)若点P在第一象限,记直线AB与PC的交点为D当PD:DC=1:3时,求a的值;(3)是否同时存在a,b,使PCA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由(2010武汉)如图,抛物线经过A(1,0),C(2,)两点,与x轴交于另一点B(1)求此抛物线的解析式;(2)若抛物线的顶点为M,点P为线段OB上一动点 (不与点B重合

9、),点Q在线段MB上移动,且MPQ=45,设线段OP=x,MQ=,求y2与x的函数关系式,并直接写出自变量x的取值范围;(3)在同一平面直角坐标系中,两条直线x=m,x=n分别与抛物线交于点E,G,与(2)中的函数图象交于点F,H问四边形EFHG能否为平行四边形? 若能,求m,n之间的数量关系;若不能,请说明理由备用图 (2011江苏镇江)在平面直角坐标系xOy中,直线过点A(1,0)且与y轴平行,直线过点B(0,2)且与x轴平行,直线与相交于点P点E为直线上一点,反比例函数(k0)的图象过点E且与直线相交于点F(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF若k2,且OEF的面积

10、为PEF的面积2倍,求点E的坐标;(3)是否存在点E及轴上的点M,使得以点M、E、F为顶点的三角形与PEF全等?若存在,求E点坐标;若不存在,请说明理由(2010浙江舟山)ABC中,A=B=30,AB=把ABC放在平面直角坐标系中,使AB的中点位于坐标原点O(如图),ABC可以绕点O作任意角度的旋转(1)当点B在第一象限,纵坐标是时,求点B的横坐标;(2)如果抛物线(a0)的对称轴经过点C,请你探究:当,时,A,B两点是否都在这条抛物线上?并说明理由;OyxCBA11-1-1设b=2am,是否存在这样的m值,使A,B两点不可能同时在这条抛物线上?若存在,直接写出m的值;若不存在,请说明理由(湖

11、北黄冈)已知二次函数的图象如图所示(1)求二次函数的解析式及抛物线顶点M的坐标;(2)若点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q当点N在线段BM上运动时(点N不与点B,点M重合),设OQ的长为t,四边形NQAC面积为S,求S与t之间的函数关系式及自变量t的取值范围;(3)在对称轴右侧的抛物线上是否存在点P,使PAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由;(4)将OAC补成矩形,使得OAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标(不需要计算过程)三、测试提高1 (2011山东东营)如图所示,

12、四边形OABC是矩形,点A、C的坐标分别为(),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线交折线OAB于点E(1)记ODE的面积为S求S与b的函数关系式;(2)当点E在线段OA上时,且tanDEO=若矩形OABC关于直线DE的对称图形为四边形试探究四边形与矩形OABC的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由 (2011辽宁大连)如图,抛物线yax2+bx+c经过A(1,0)、B(3,0)、C(0,3)三点,对称轴与抛物线相交于点P、与直线BC相交于点M,连接PB(1)求该抛物线的解析式;(2)抛物线上是否存在一点Q,使QMB与P

13、MB的面积相等,若存在,求点Q的坐标;若不存在,说明理由;(3)在第一象限、对称轴右侧的抛物线上是否存在一点R,使RPM与RMB的面积相等,若存在,直接写出点R的坐标;若不存在,说明理由(2011湖北十堰)如图,己知抛物线y=x2+bx+c与x轴交于点A(1,0)和点 B,与y轴交于点C(0,-3)(1)求抛物线的解析式;(2)如图(1),己知点H(0,-1)问在抛物线上是否存在点G (点G在y轴的左侧),使得SGHC=SGHA?若存在,求出点G的坐标,若不存在,请说明理由:(3)如图(2),抛物线上点D在x轴上的正投影为点E(2,0),F是OC的中点,连接DF,P为线段BD上的一点,若EPF

14、=BDF,求线段PE的长(2010天津)在平面直角坐标系中,已知抛物线与轴交于点、(点在点的左侧),与轴的正半轴交于点,顶点为()若,求此时抛物线顶点的坐标;()将()中的抛物线向下平移,若平移后,在四边形ABEC中满足SBCE = SABC,求此时直线的解析式;()将()中的抛物线作适当的平移,若平移后,在四边形ABEC中满足SBCE =2SAOC,且顶点恰好落在直线上,求此时抛物线的解析式(2011山东聊城)如图,在矩形ABCD中,AB12cm,BC8cm点E、F、G分别从点A、B、C同时出发,沿矩形的边按逆时针方向移动,点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G

15、(即点F与点G重合)时,三个点随之停止移动设移动开始后第ts时,EFG的面积为Scm2(1)当t1s时,S的值是多少?(2)写出S与t之间的函数解析式,并指出自变量t的取值范围;AEBFCGD(3)若点F在矩形的边BC上移动,当t为何值时,以点B、E、F为顶点的三角形与以C、F、G为顶点的三角形相似?请说明理由5. (2011江苏淮安)如图,在RtABC中,C=90,AC=8,BC=6,点P在AB上,AP=2,点E、F同时从点P出发,分别沿PA、PB以每秒1个单位长度的速度向点A、B匀速运动,点E到达点A后立刻以原速度沿AB向点B运动,点F运动到点B时停止,点E也随之停止在点E、F运动过程中,

16、以EF为边作正方形EFGH,使它与ABC在线段AB的同侧设E、F运动的时间为t秒(t0),正方形EFGH与ABC重叠部分面积为S(1)当t=1时,正方形EFGH的边长是当t=3时,正方形EFGH的边长是(2)当0t2时,求S与t的函数关系式;(3)直接答出:在整个运动过程中,当t为何值时,S最大?最大面积是多少?备用图三、测试提高1. (2010山东东营)如图,在锐角三角形ABC中,BC=12,ABC的面积为48,D,E分别是边AB,AC上的两个动点(D不与A,B重合),且保持DEBC,以DE为边,在点A的异侧作正方形DEFG(1)当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;(

17、2)设DE = x,ABC与正方形DEFG重叠部分的面积为y,试求y关于x的函数关系式,写出x的取值范围,并求出y的最大值BADEFGCB备用图(1)ACB备用图(2)AC第四讲 中考压轴题十大类型之 三角形存在性问题板块一、等腰三角形存在性1. (2011江苏盐城)如图,已知一次函数与正比例函数的图象交于点A,且与x轴交于点B(1)求点A和点B的坐标;(2)过点A作ACy轴于点C,过点B作直线ly轴动点P从点O出发,以每秒1个单位长的速度,沿OCA的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q当点P到达点A时,点P和直

18、线l都停止运动在运动过程中,设动点P运动的时间为t秒是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由(备用图)(2009湖北黄冈)如图,在平面直角坐标系xOy中,抛物线与x轴的交点为点A,与y轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连结AC现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DEOA,交CA于点E,射线QE交x轴于点F设动点P,Q移动的时间为t(单位:秒)(1)求A,B,C三点的

19、坐标和抛物线的顶点的坐标;(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;(3)当时,PQF的面积是否总为定值?若是,求出此定值,若不是,请说明理由;(4)当t为何值时,PQF为等腰三角形?请写出解答过程板块二、直角三角形(2009四川眉山)如图,已知直线与轴交于点A,与x轴交于点D,抛物线与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为 (1,0)(1)求该抛物线的解析式;(2) 动点P在x轴上移动,当PAE是直角三角形时,求点P的坐标(2010广东中山)如图所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2动点M、N分别从点D、B同时出发,沿射线DA

20、、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动连接FM、FN,当F、N、M不在同一直线上时,可得FMN,过FMN三边的中点作PWQ设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒试解答下列问题:(1)说明FMNQWP;(2)设(即M从D到A运动的时间段)试问x为何值时,PWQ为直角三角形?当x在何范围时,PQW不为直角三角形?(3)问当x为何值时,线段MN最短?求此时MN的值板块三、相似三角形存在性(3) (2011湖北天门)在平面直角坐标系中,抛物线与轴的两个交点分别为A(-3,0)、B(1,0),过顶点C作CHx轴于点H(1

21、)直接填写:= ,b= ,顶点C的坐标为 ;(2)在轴上是否存在点D,使得ACD是以AC为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;(3)若点P为x轴上方的抛物线上一动点(点P与顶点C不重合),PQAC于点Q,当PCQ与ACH相似时,求点P的坐标 (备用图)三、测试提高1. (2009广西钦州)如图,已知抛物线与坐标轴交于A、B、C三点, A点的坐标为(1,0),过点C的直线与x轴交于点Q,点P是线段BC上的一个动点,过P作PHOB于点H若PB5t,且(1)填空:点C的坐标是_,b_,c_;(2)求线段QH的长(用含t的式子表示);(3)依点P的变化,是否存在t的值,使以P

22、、H、Q为顶点的三角形与COQ相似?若存在,求出所有t的值;若不存在,说明理由第五讲 中考压轴题十大类型之 四边形存在性问题1. (2009黑龙江齐齐哈尔)直线与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线OBA运动(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t秒,OPQ的面积为S,求出S与t之间的函数关系式;(3)当时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标(2010河南)在平面直角坐标系中,已知抛物线经过A,B,C三点(1)求抛物线的解析式;(2)若点M为

23、第三象限内抛物线上一动点,点M的横坐标为m,AMB的面积为S求S关于m的函数关系式,并求出S的最大值(3)若点P是抛物线上的动点,点Q是直线上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标 2. (2011黑龙江鸡西)已知直线与x轴、y轴分别交于A、B两点,ABC=60,BC与x轴交于点C(1)试确定直线BC的解析式;(2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发沿CBA向点A运动(不与C、A重合),动点P的运动速度是每秒1个单位长度,动点Q的运动速度是每秒2个单位长度设APQ的面积为S,P点的运动时间为t秒

24、,求S与t的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,当APQ的面积最大时,y轴上有一点M,平面内是否存在一点N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出N点的坐标;若不存在,请说明理由3. (2007河南)如图,对称轴为直线x的抛物线经过点A (6,0)和B(0,4)(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;(3)当四边形OEAF的面积为24时,请判断OEAF是否为菱形?是否存在点E,使四边形OE

25、AF为正方形?若存在,求出点E的坐标;若不存在,请说明理由4. (2010黑龙江大兴安岭)如图,在平面直角坐标系中,函数的图象分别交x轴、y轴于A、B两点过点A的直线交y轴正半轴于点M,且点M为线段OB的中点(1)求直线AM的解析式; (2)试在直线AM上找一点P,使得SABPSAOB ,请直接写出点P的坐标;(3)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使以A、B、M、H为顶点的四边形是等腰梯形?若存在,请直接写出点H的坐标;若不存在,请说明理由三、测试提高1. (2009辽宁抚顺)已知:如图所示,关于x的抛物线(a0)与x轴交于点A(-2,0)、点B(6,0),与y轴交

26、于点C(1)求出此抛物线的解析式,并写出顶点坐标;(2)在抛物线上有一点D,使四边形ABDC为等腰梯形,写出点D的坐标,并求出直线AD的解析式;(3)在(2)中的直线AD交抛物线的对称轴于点M,抛物线上有一动点P,x轴上有一动点Q是否存在以A、M、P、Q为顶点的平行四边形?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由来源:ZxxkCom第六讲 中考压轴题十大类型之 线段之间的关系1. (2010天津)在平面直角坐标系中,矩形的顶点O在坐标原点,顶点A、B分别在轴、轴的正半轴上,D为边OB的中点温馨提示:如图,可以作点D关于轴的对称点,连接与轴交于点E,此时的周长是最小的.这样,你只需

27、求出的长,就可以确定点的坐标了.()若为边上的一个动点,当的周长最小时,求点的坐标;yBODCAxEyBODCAx()若、为边上的两个动点,且,当四边形的周长最小时,求点、的坐标(2011四川广安)四边形ABCD是直角梯形,BCAD,BAD=90,BC与y轴相交于点M,且M是BC的中点,A、B、D三点的坐标分别是A(),B(),D(3,0)连接DM,并把线段DM沿DA方向平移到ON若抛物线经过点D、M、N(1)求抛物线的解析式;(2)抛物线上是否存在点P,使得PA=PC,若存在,求出点P的坐标;若不存在,请说明理由;(3)设抛物线与x轴的另一个交点为E,点Q是抛物线的对称轴上的一个动点,当点Q

28、在什么位置时有|QE-QC|最大?并求出最大值(2011四川眉山)如图,在直角坐标系中,已知点A(0,1),B(,4),将点B绕点A顺时针方向旋转90得到点C,顶点在坐标原点的抛物线经过点B(1) 求抛物线的解析式和点C的坐标;(2) 抛物线上有一动点P,设点P到x轴的距离为,点P到点A的距离为,试说明; (3) 在(2)的条件下,请探究当点P位于何处时,PAC的周长有最小值,并求出PAC的周长的最小值 (2011福建福州)已知,如图,二次函数图象的顶点为H,与x轴交于A、B两点(B在A点右侧),点H、B关于直线对称(1)求A、B两点坐标,并证明点A在直线上;(2)求二次函数解析式;(3)过点

29、B作直线BKAH交直线于K点,M、N分别为直线AH和直线上的两个动点,连接HN、NM、MK,求HN+NM+MK和的最小值2. (2009湖南郴州) 如图1,已知正比例函数和反比例函数的图象都经过点M(2,1),且P(1,2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B (1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得OBQ与OAP面积相等?如果存在,请求出点Q的坐标,如果不存在,请说明理由; (3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四

30、边形OPCQ周长的最小值 图1x 图2来源:Z xkCom 3. (2010江苏苏州)如图,以为顶点的抛物线与轴交于点B已知A、B两点的坐标分别为(3,0)、(0,4)(1)求抛物线的解析式;(2)设是抛物线上的一点(为正整数),且它位于对称轴的右侧若以为顶点的四边形四条边的长度是四个连续的正整数,求点的坐标;(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点是否总成立?请说明理由三、测试提高1. (2009浙江舟山)如图,已知点A(-4,8)和点B(2,n)在抛物线上(1)求a的值及点B关于x轴对称点P的坐标,并在x轴上找一点Q,使得AQ+QB最短,求出点Q的坐标;(2)平移抛物线,

31、记平移后点A的对应点为A,点B的对应点为B,点C(-2,0)和点D(-4,0)是x轴上的两个定点当抛物线向左平移到某个位置时,AC+CB 最短,求此时抛物线的函数解析式;当抛物线向左或向右平移时,是否存在某个位置,使四边形ABCD的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由4x22A8-2O-2-4y6BCD-44第七讲 中考压轴题十大类型之定值问题1. (2011天津)已知抛物线:,点F(1,1)()求抛物线的顶点坐标;()若抛物线与y轴的交点为A,连接AF,并延长交抛物线于点B,求证:;抛物线上任意一点P()(),连接PF,并延长交抛物线于点Q(),试判断是否成立?

32、请说明理由;()将抛物线作适当的平移,得抛物线:,若时,恒成立,求m的最大值(2009湖南株洲)如图,已知ABC为直角三角形,点、在轴上,点坐标为(,)(),线段与轴相交于点,以(1,0)为顶点的抛物线过点、(1)求点的坐标(用表示);(2)求抛物线的解析式;(3)设点为抛物线上点至点之间的一动点,连结并延长交于点,连结并延长交于点,试证明:为定值 (2008山东济南)已知:抛物线(a0),顶点C (1,),与x轴交于A、B两点,(1)求这条抛物线的解析式;(2)如图,以AB为直径作圆,与抛物线交于点D,与抛物线对称轴交于点E,依次连接A、D、B、E,点P为线段AB上一个动点(P与A、B两点不

33、重合),过点P作PMAE于M,PNDB于N,请判断是否为定值? 若是,请求出此定值;若不是,请说明理由;(3)在(2)的条件下,若点S是线段EP上一点,过点S作FGEP ,FG分别与边AE、BE相交于点F、G(F与A、E不重合,G与E、B不重合),请判断是否成立若成立,请给出证明;若不成立,请说明理由(2011湖南株洲)孔明是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点,两直角边与该抛物线交于、两点,请解答以下问题:(1)若测得(如图1),求的值;(2)对同一条抛物线,孔明将三角板绕点旋转到如图2所示位置时,过作轴于点,测得

34、,写出此时点的坐标,并求点的横坐标;(3)对该抛物线,孔明将三角板绕点旋转任意角度时惊奇地发现,交点、的连线段总经过一个固定的点,试说明理由并求出该点的坐标(2009湖北武汉)如图,抛物线经过、两点,与轴交于另一点B(1)求抛物线的解析式;(2)已知点在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;(3)在(2)的条件下,连接BD,点P为抛物线上一点,且,求点P的坐标yxOABC来源:学科网ZXXK三、测试提高1. (2009湖南湘西)在直角坐标系xOy中,抛物线与x轴交于两点A、B,与y轴交于点C,其中A在B的左侧,B的坐标是(3,0)将直线沿y轴向上平移3个单位长度后恰好经过点B、

35、C(1) 求k的值;(2) 求直线BC和抛物线的解析式;(3) 求ABC的面积;(4) 设抛物线顶点为D,点P在抛物线的对称轴上,且APD=ACB,求点P的坐标 、第八讲 中考压轴题十大类型之 几何三大变换问题方法指导:为了求得的值,可先求、的长,不妨设:=21. (2009山西太原)问题解决:如图(1),将正方形纸片折叠,使点落在边上一点(不与点,重合),压平后得到折痕当时,求的值图(1)ABCDEFMN类比归纳:在图(1)中,若则的值等于 ;若则的值等于 ;若(为整数),则的值等于 (用含的式子表示)图(2)NABCDEFM联系拓广: 如图(2),将矩形纸片折叠,使点落在边上一点(不与点重

36、合),压平后得到折痕设则的值等于 (用含的式子表示)(2011陕西)如图,在矩形ABCD中,将矩形折叠,使B落在边AD(含端点)上,落点记为E,这时折痕与边BC或边CD(含端点)交于点F,然后再展开铺平,则以B、E、F为顶点的BEF称为矩形ABCD的“折痕三角形”.(1)由“折痕三角形”的定义可知,矩形ABCD的任意一个“折痕BEF”是一个_三角形;(2)如图,在矩形ABCD中,AB=2,BC=4当它的“折痕BEF”的顶点E位于边AD的中点时,画出这个“折痕BEF”,并求出点F的坐标;(3)如图,在矩形ABCD中, AB=2,BC=4,该矩形是否存在面积最大的“折痕BEF”?若存在,说明理由,

37、并求出此时点E的坐标;若不存在,为什么?图 图 图 (2010江西南昌)课题:两个重叠的正多边形,其中的一个绕某一个顶点旋转所形成的有关问题实验与论证设旋转角A1A0B1(A1A0A2),1,2,3,4,5,6所表示的角如图所示(1)用含的式子表示:3_,4_,5_;(2)图1图4中,连接A0H时,在不添加其他辅助线的情况下,是否存在与直线A0H垂直且被它平分的线段?若存在,请选择其中的一个图给出证明;若不存在,请说明理由;归纳与猜想设正n边形A0A1A2An-1与正n边形A0B1B2Bn-1重合(其中,A1与B1重合),现将正n边形A0B1B2Bn-1绕顶点A0逆时针旋转()(3)设n与上述

38、“3,4,”的意义一样,请直接写出n的度数;(4)试猜想在n边形且不添加其他辅助线的情形下,是否存在与直线A0H垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由(2009山东德州)已知正方形ABCD中,E为对角线BD上一点,过E点作EFBD交BC于F,连接DF,G为DF中点,连接EG,CG(1)求证:EG=CG;(2)将图中BEF绕B点逆时针旋转45,如图所示,取DF中点G,连接EG,CG问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由 (3)将图中BEF绕B点旋转任意角度,如图所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)DFBACE图FBADCEG图FBADCEG图 (2010江苏苏州)刘卫同学在一次课外活动中,用硬纸片做了两个直角三角形,见图、图中,图中,图是刘卫同学所做的一个实验:他将的直角边与ABC的斜边AC重合在一起,并将沿AC方向移动在移动过程中,D、E两点始终在AC边上(移动开始时点与点重合)(1)在沿AC方向移动的过程中,刘卫同学发现:

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁