2019年全国统一高考数学试卷(理科)(新课标ⅱ).doc

上传人:恋****泡 文档编号:2380002 上传时间:2020-03-12 格式:DOC 页数:18 大小:488.55KB
返回 下载 相关 举报
2019年全国统一高考数学试卷(理科)(新课标ⅱ).doc_第1页
第1页 / 共18页
2019年全国统一高考数学试卷(理科)(新课标ⅱ).doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2019年全国统一高考数学试卷(理科)(新课标ⅱ).doc》由会员分享,可在线阅读,更多相关《2019年全国统一高考数学试卷(理科)(新课标ⅱ).doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2019年全国统一高考数学试卷(理科)(新课标)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1(5分)设集合Ax|x25x+60,Bx|x10,则AB()A(,1)B(2,1)C(3,1)D(3,+)2(5分)设z3+2i,则在复平面内对应的点位于()A第一象限B第二象限C第三象限D第四象限3(5分)已知(2,3),(3,t),|1,则()A3B2C2D34(5分)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系为解决这

2、个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行L2点是平衡点,位于地月连线的延长线上设地球质量为M1,月球质量为M2,地月距离为R,L2点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:+(R+r)设由于的值很小,因此在近似计算中33,则r的近似值为()ARBRCRDR5(5分)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A中位数B平均数C方差D极差6(5分)若ab,则()Aln(ab)0B3a3bCa3b30D|

3、a|b|7(5分)设,为两个平面,则的充要条件是()A内有无数条直线与平行B内有两条相交直线与平行C,平行于同一条直线D,垂直于同一平面8(5分)若抛物线y22px(p0)的焦点是椭圆+1的一个焦点,则p()A2B3C4D89(5分)下列函数中,以为周期且在区间(,)单调递增的是()Af(x)|cos2x|Bf(x)|sin2x|Cf(x)cos|x|Df(x)sin|x|10(5分)已知(0,),2sin2cos2+1,则sin()ABCD11(5分)设F为双曲线C:1(a0,b0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2a2交于P,Q两点若|PQ|OF|,则C的离心率为()A

4、BC2D12(5分)设函数f(x)的定义域为R,满足f(x+1)2f(x),且当x(0,1时,f(x)x(x1)若对任意x(,m,都有f(x),则m的取值范围是()A(,B(,C(,D(,二、填空题:本题共4小题,每小题5分,共20分。13(5分)我国高铁发展迅速,技术先进经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为 14(5分)已知f(x)是奇函数,且当x0时,f(x)eax若f(ln2)8,则a 15(5分)ABC的内角A,B,C的对边分别为a,b,c若b6,

5、a2c,B,则ABC的面积为 16(5分)中国有悠久的金石文化,印信是金石文化的代表之一印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1)半正多面体是由两种或两种以上的正多边形围成的多面体半正多面体体现了数学的对称美图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1则该半正多面体共有 个面,其棱长为 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17(12分)如图,长方体ABCDA

6、1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BEEC1(1)证明:BE平面EB1C1;(2)若AEA1E,求二面角BECC1的正弦值18(12分)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束(1)求P(X2);(2)求事件“X4且甲获胜”的概率19(12分)已知数列an和bn满足a11,b10,4an+13anbn+4,4bn+13bnan4(

7、1)证明:an+bn是等比数列,anbn是等差数列;(2)求an和bn的通项公式20(12分)已知函数f(x)lnx(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x0是f(x)的一个零点,证明曲线ylnx在点A(x0,lnx0)处的切线也是曲线yex的切线21(12分)已知点A(2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为记M的轨迹为曲线C(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PEx轴,垂足为E,连结QE并延长交C于点G(i)证明:PQG是直角三角形;(ii)求PQG面积的最大值(二)选考题

8、:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。选修4-4:坐标系与参数方程(10分)22(10分)在极坐标系中,O为极点,点M(0,0)(00)在曲线C:4sin上,直线l过点A(4,0)且与OM垂直,垂足为P(1)当0时,求0及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程选修4-5:不等式选讲(10分)23已知f(x)|xa|x+|x2|(xa)(1)当a1时,求不等式f(x)0的解集;(2)当x(,1)时,f(x)0,求a的取值范围2019年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题:本题共12小

9、题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1(5分)设集合Ax|x25x+60,Bx|x10,则AB()A(,1)B(2,1)C(3,1)D(3,+)【解答】解:根据题意,Ax|x25x+60x|x3或x2,Bx|x10x|x1,则ABx|x1(,1);故选:A2(5分)设z3+2i,则在复平面内对应的点位于()A第一象限B第二象限C第三象限D第四象限【解答】解:z3+2i,在复平面内对应的点为(3,2),在第三象限故选:C3(5分)已知(2,3),(3,t),|1,则()A3B2C2D3【解答】解:(2,3),(3,t),(1,t3),|1,t30即(1,

10、0),则2故选:C4(5分)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行L2点是平衡点,位于地月连线的延长线上设地球质量为M1,月球质量为M2,地月距离为R,L2点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:+(R+r)设由于的值很小,因此在近似计算中33,则r的近似值为()ARBRCRDR【解答】解:rR,r满足方程:+(R+r)33,rR故选:D5(5分)演讲比赛共有

11、9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A中位数B平均数C方差D极差【解答】解:根据题意,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,最中间的一个数不变,即中位数不变,故选:A6(5分)若ab,则()Aln(ab)0B3a3bCa3b30D|a|b|【解答】解:取a0,b1,则ln(ab)ln10,排除A;,排除B;a303(1)31b3,故C对;|a|0|1|1b,排除D故选:C7(5分)设,为两个平面,则的充要条件

12、是()A内有无数条直线与平行B内有两条相交直线与平行C,平行于同一条直线D,垂直于同一平面【解答】解:对于A,内有无数条直线与平行,或;对于B,内有两条相交直线与平行,;对于C,平行于同一条直线,或;对于D,垂直于同一平面,或故选:B8(5分)若抛物线y22px(p0)的焦点是椭圆+1的一个焦点,则p()A2B3C4D8【解答】解:由题意可得:3pp()2,解得p8故选:D9(5分)下列函数中,以为周期且在区间(,)单调递增的是()Af(x)|cos2x|Bf(x)|sin2x|Cf(x)cos|x|Df(x)sin|x|【解答】解:f(x)sin|x|不是周期函数,可排除D选项;f(x)co

13、s|x|的周期为2,可排除C选项;f(x)|sin2x|在处取得最大值,不可能在区间(,)单调递增,可排除B故选:A10(5分)已知(0,),2sin2cos2+1,则sin()ABCD【解答】解:2sin2cos2+1,可得:4sincos2cos2,(0,),sin0,cos0,cos2sin,sin2+cos2sin2+(2sin)25sin21,解得:sin故选:B11(5分)设F为双曲线C:1(a0,b0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2a2交于P,Q两点若|PQ|OF|,则C的离心率为()ABC2D【解答】解:如图,以OF为直径的圆的方程为x2+y2cx0,又

14、圆O的方程为x2+y2a2,PQ所在直线方程为把x代入x2+y2a2,得PQ,再由|PQ|OF|,得,即4a2(c2a2)c4,e22,解得e故选:A12(5分)设函数f(x)的定义域为R,满足f(x+1)2f(x),且当x(0,1时,f(x)x(x1)若对任意x(,m,都有f(x),则m的取值范围是()A(,B(,C(,D(,【解答】解:因为f(x+1)2f(x),f(x)2f(x1),x(0,1时,f(x)x(x1),0,x(1,2时,x1(0,1,f(x)2f(x1)2(x1)(x2),0;x(2,3时,x1(1,2,f(x)2f(x1)4(x2)(x3)1,0,当x(2,3时,由4(x

15、2)(x3)解得x或x,若对任意x(,m,都有f(x),则m故选:B二、填空题:本题共4小题,每小题5分,共20分。13(5分)我国高铁发展迅速,技术先进经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为0.98【解答】解:经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,经停该站高铁列车所有车次的平均正点率的估计值为:(100.97+200.98+100.99)0.98故答案为:0.9814

16、(5分)已知f(x)是奇函数,且当x0时,f(x)eax若f(ln2)8,则a3【解答】解:f(x)是奇函数,f(ln2)8,又当x0时,f(x)eax,f(ln2)ealn28,aln2ln8,a3故答案为:315(5分)ABC的内角A,B,C的对边分别为a,b,c若b6,a2c,B,则ABC的面积为【解答】解:由余弦定理有b2a2+c22accosB,b6,a2c,B,36(2c)2+c24c2cos,c212,SABC,故答案为:616(5分)中国有悠久的金石文化,印信是金石文化的代表之一印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1)半正

17、多面体是由两种或两种以上的正多边形围成的多面体半正多面体体现了数学的对称美图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1则该半正多面体共有26个面,其棱长为1【解答】解:该半正多面体共有8+8+8+226个面,设其棱长为x,则x+x+x1,解得x1故答案为:26,1三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第1721题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17(12分)如图,长方体ABCDA1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BEEC1(1)证明:

18、BE平面EB1C1;(2)若AEA1E,求二面角BECC1的正弦值【解答】证明:(1)长方体ABCDA1B1C1D1中,B1C1平面ABA1B1,B1C1BE,BEEC1,BE平面EB1C1解:(2)以C为坐标原点,建立如图所示的空间直角坐标系,设AEA1E1,BE平面EB1C1,BEEB1,AB1,则E(1,1,1),A(1,1,0),B1(0,1,2),C1(0,0,2),C(0,0,0),BCEB1,EB1面EBC,故取平面EBC的法向量为(1,0,1),设平面ECC1 的法向量(x,y,z),由,得,取x1,得(1,1,0),cos,二面角BECC1的正弦值为18(12分)11分制乒乓

19、球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束(1)求P(X2);(2)求事件“X4且甲获胜”的概率【解答】解:(1)设双方10:10平后的第k个球甲获胜为事件Ak(k1,2,3,),则P(X2)P(A1A2)+P()P(A1)P(A2)+P()P()0.50.4+0.50.60.5(2)P(X4且甲获胜)P(A2A3A4)+P()P()P(A2)P(A3)P(A4)+

20、P(A1)P()P(A3)P(A4)(0.50.4+0.50.6)0.50.40.119(12分)已知数列an和bn满足a11,b10,4an+13anbn+4,4bn+13bnan4(1)证明:an+bn是等比数列,anbn是等差数列;(2)求an和bn的通项公式【解答】解:(1)证明:4an+13anbn+4,4bn+13bnan4;4(an+1+bn+1)2(an+bn),4(an+1bn+1)4(anbn)+8;即an+1+bn+1(an+bn),an+1bn+1anbn+2;又a1+b11,a1b11,an+bn是首项为1,公比为的等比数列,anbn是首项为1,公差为2的等差数列;(

21、2)由(1)可得:an+bn()n1,anbn1+2(n1)2n1;an()n+n,bn()nn+20(12分)已知函数f(x)lnx(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x0是f(x)的一个零点,证明曲线ylnx在点A(x0,lnx0)处的切线也是曲线yex的切线【解答】解析:(1)函数f(x)lnx定义域为:(0,1)(1,+);f(x)+0,(x0且x1),f(x)在(0,1)和(1,+)上单调递增,在(0,1)区间取值有,代入函数,由函数零点的定义得,f()0,f()0,f()f()0,f(x)在(0,1)有且仅有一个零点,在(1,+)区间,区间取值有e,

22、e2代入函数,由函数零点的定义得,又f(e)0,f(e2)0,f(e)f(e2)0,f(x)在(1,+)上有且仅有一个零点,故f(x)在定义域内有且仅有两个零点;(2)x0是f(x)的一个零点,则有lnx0,曲线ylnx,则有y;由直线的点斜式可得曲线的切线方程,曲线ylnx在点A(x0,lnx0)处的切线方程为:ylnx0(xx0),即:yx1+lnx0,将lnx0代入,即有:yx+,而曲线yex的切线中,在点(ln,)处的切线方程为:y(xln)x+lnx0,将lnx0代入化简,即:yx+,故曲线ylnx在点A(x0,lnx0)处的切线也是曲线yex的切线故得证21(12分)已知点A(2,

23、0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为记M的轨迹为曲线C(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PEx轴,垂足为E,连结QE并延长交C于点G(i)证明:PQG是直角三角形;(ii)求PQG面积的最大值【解答】解:(1)由题意得,整理得曲线C的方程:,曲线C是焦点在x轴上不含长轴端点的椭圆;(2)(i)设P(x0,y0),则Q(x0,y0),E(x0,0),G(xG,yG),直线QE的方程为:,与联立消去y,得,把代入上式,得kPG,kPQkPG1,PQPG,故PQG为直角三角形;(ii)SPQG令t,则t2,SP

24、QG利用“对号”函数f(t)2t+在2,+)的单调性可知,f(t)(t2时取等号),(此时),故PQG面积的最大值为(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。选修4-4:坐标系与参数方程(10分)22(10分)在极坐标系中,O为极点,点M(0,0)(00)在曲线C:4sin上,直线l过点A(4,0)且与OM垂直,垂足为P(1)当0时,求0及l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程【解答】解:(1)当0时,在直线l上任取一点(,),则有,故l的极坐标方程为有;(2)设P(,),则在RtOAP中,有4cos,P在线段OM上,故P点轨迹的极坐标方程为4cos,选修4-5:不等式选讲(10分)23已知f(x)|xa|x+|x2|(xa)(1)当a1时,求不等式f(x)0的解集;(2)当x(,1)时,f(x)0,求a的取值范围【解答】解:(1)当a1时,f(x)|x1|x+|x2|(x1),f(x)0,当x1时,f(x)2(x1)20,恒成立,x1;当x1时,f(x)(x1)(x+|x2|)0恒成立,x;综上,不等式的解集为(,1);(2)当a1时,f(x)2(ax)(x1)0在x(,1)上恒成立;当a1时,x(a,1),f(x)2(xa)0,不满足题意,a的取值范围为:1,+)声第18页(共18页)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 研究报告 > 其他报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁