人教版八年级数学上三角形全等的判定教学设计_PPT.ppt

上传人:仙*** 文档编号:23110233 上传时间:2022-06-28 格式:PPT 页数:27 大小:1.44MB
返回 下载 相关 举报
人教版八年级数学上三角形全等的判定教学设计_PPT.ppt_第1页
第1页 / 共27页
人教版八年级数学上三角形全等的判定教学设计_PPT.ppt_第2页
第2页 / 共27页
点击查看更多>>
资源描述

《人教版八年级数学上三角形全等的判定教学设计_PPT.ppt》由会员分享,可在线阅读,更多相关《人教版八年级数学上三角形全等的判定教学设计_PPT.ppt(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、AEFABCF 1、 什么叫全等三角形?什么叫全等三角形?能够重合的两个三角形叫能够重合的两个三角形叫 全等三角形。全等三角形。 2、 已知已知ABC DEF,找出其中相等的边与角,找出其中相等的边与角AB=DE CA=FD BC=EF A= D B=E C= FDEFDEFABCAB=DE CA=FD BC=EF A= D B=E C= FDEF1.满足这六个条件可以保证满足这六个条件可以保证ABC DEF吗?吗?2.如果只满足这些条件中的一部分如果只满足这些条件中的一部分,那么能保证那么能保证ABC DEF吗吗?ABCDEFAB=DE CA=FD BC=EF A= D B=E C= F1.

2、满足这六个条件可以保证满足这六个条件可以保证ABC DEF吗?吗?2.如果只满足这些条件中的一部分如果只满足这些条件中的一部分,那么能保证那么能保证ABC DEF吗吗?思考:思考:1.只给一条边时;只给一条边时;331.只给一个条件只给一个条件452.只给一个角时;只给一个角时;45结论结论: :只有一条边或一个角对应相等只有一条边或一个角对应相等的的两个三角形不一定全等两个三角形不一定全等. .两边;两边;两角。两角。一边一角;一边一角; 2.如果满足如果满足两个两个条件,你能说出有条件,你能说出有哪几种可能的情况?哪几种可能的情况?如果三角形的两边分别为如果三角形的两边分别为4cm4cm,

3、6cm 6cm 时时6cm6cm4cm4cm结论结论: :两条边对应相等的两条边对应相等的两个三角形不一定全等两个三角形不一定全等. .三角形的一条边为三角形的一条边为4cm,一个内角为一个内角为30时时:4cm4cm3030结论结论: :一条边一个角对应相等的一条边一个角对应相等的两个两个三角形不一定全等三角形不一定全等. .45304530如果三角形的两个内角分别是如果三角形的两个内角分别是3030,4545时时结论结论: :两个角对应相等的两个角对应相等的两个三角形不一定全等两个三角形不一定全等. .根据三角形的内角和为根据三角形的内角和为180180度,则第三角一定确定,度,则第三角一

4、定确定,所以当三内角对应相等时,两个三角形不一定全等所以当三内角对应相等时,两个三角形不一定全等两个条件两个条件两角;两角;两边;两边;一边一角一边一角。结论:只给出一个或两个结论:只给出一个或两个条件时,都不能保证所画条件时,都不能保证所画的三角形一定全等。的三角形一定全等。一个条件一个条件一角;一角;一边;一边;三角三角;三边;三边;两边一角;两边一角;两角一边。两角一边。 3.如果满足如果满足三个三个条件,你能说出有条件,你能说出有哪几种可能的情况?哪几种可能的情况?探索三角形全等的条件探索三角形全等的条件已知两个三角形的三个内角分别为已知两个三角形的三个内角分别为3030,6060 ,

5、9090 它们一定全等吗?它们一定全等吗?这说明有三个角对应相等的两个三角形这说明有三个角对应相等的两个三角形不一定全等不一定全等三个角三个角已知两个三角形的三条边都分别为已知两个三角形的三条边都分别为3cm3cm、4cm4cm、6cm 6cm 。它们一定全等吗?。它们一定全等吗?3cm4cm6cm4cm6cm3cm6cm4cm3cm三条边三条边先任意画出一个先任意画出一个ABC,再画出一个,再画出一个ABC ,使使AB= AB ,BC =BC, A C =AC.把画好把画好ABC的剪的剪下,放到下,放到ABC上,他们全等吗?上,他们全等吗?画法画法: 1.画线段画线段 BC =BC;2.分别

6、以分别以 B , C为圆心为圆心,BA,BC为半径画弧为半径画弧,两弧两弧交于点交于点A;3. 连接线段连接线段 AB , AC .上述结论反映了什么规律?上述结论反映了什么规律?三边对应相等的两个三角形全等。三边对应相等的两个三角形全等。简写为简写为“边边边边边边”或或“SSS”SSS”边边边公理:边边边公理: 注:注: 这个定理说明,只要三角形的这个定理说明,只要三角形的三边的长度确定了,这个三角形的形三边的长度确定了,这个三角形的形状和大小就完全确定了,这也是三角状和大小就完全确定了,这也是三角形具有形具有稳定性稳定性的原理。的原理。如何用符号语言来表达呢如何用符号语言来表达呢?在在AB

7、C与与DEF中中ABCDEFAB=DEAC=DFBC=EFABC DEF(SSS)判断两个三角形全等的推理过程,判断两个三角形全等的推理过程,叫做证明三角形全等。叫做证明三角形全等。ACBD证明:证明:D是是BC的中点的中点BD=CD在在ABD与与ACD中中AB=AC(已知)(已知)BD=CD(已证)(已证)AD=AD(公共边)(公共边)ABD ACD(SSS)例例1 如图如图, ABC是一个钢架,是一个钢架,AB=AC,AD是连接是连接A与与BC中点中点D的支架,求证:的支架,求证: ABD ACD求证:求证:B=C,B=C,准备条件:证全等时要用的条件要先准备条件:证全等时要用的条件要先证

8、好;证好;三角形全等书写三步骤:三角形全等书写三步骤:写出在哪两个三角形中写出在哪两个三角形中摆出三个条件用大括号括起来摆出三个条件用大括号括起来写出全等结论写出全等结论证明的书写步骤:证明的书写步骤:练习练习: 已知:如图,已知:如图,AB=AD,BC=DC, 求证求证:ABC ADCABCDACAC ( ) AB=AD ( )BC=DC ( ) ABC ADC(SSS)证明:在证明:在ABC和和ADC中中=已知已知已知已知 公共边公共边BCBCCBCBDCBBF=CDABCD1 1、填空题:、填空题:解:解: ABCDCB理由如下:理由如下:AB = CDAC = BD=ABC ( ) (

9、SSS SSS (1 1)如图,)如图,AB=CDAB=CD,AC=BDAC=BD,ABCABC和和DCBDCB是否全等?是否全等?试说明理由。试说明理由。 (2 2)如图,)如图,D D、F F是线段是线段BCBC上的两点,上的两点,AB=CEAB=CE,AF=DEAF=DE,要使,要使ABFABFECD ECD ,还需要条件还需要条件 AE B D F CB D F C =或或 BD=FC图图1已知:如图已知:如图1 1 ,AC=FEAC=FE,AD=FB,BC=DEAD=FB,BC=DE求证:求证:ABCABCFDE FDE 证明:证明: AD=FB AD=FB AB=FD AB=FD(

10、等式性质)(等式性质) 在在ABCABC和和FDE FDE 中中AC=FEAC=FE(已知)(已知)BC=DEBC=DE(已(已知知)AB=FDAB=FD(已证)(已证)ABCABCFDEFDE(SSSSSS)求证:求证:C=E C=E ,AcEDBF=?。(2) ABC FDE(已证)(已证) C=E (全等三角形的对应角相等)(全等三角形的对应角相等) 求证:求证:ABEFABEF;DEBCDEBC 已知已知: :如图,如图,AB=AC,DB=DC,AB=AC,DB=DC, 请说明请说明B =CB =C成立的理由成立的理由ABCD在在ABDABD和和ACDACD中,中,AB=AC ( (已

11、知)已知)DB=DC (已知)(已知) AD=AD (公共边)(公共边)ABD ACD (SSS)解:连接解:连接ADAD B =C (全等三角形的对应角相等)全等三角形的对应角相等) 已知已知: 如图如图, 四边形四边形ABCD中,中,AD=CB,AB=CD 求证:求证: A C。A C D B分析:要证两角或两线段相等,常先证这两角或两线段分析:要证两角或两线段相等,常先证这两角或两线段所在的两三角形全等,从而需构造全等三角形。所在的两三角形全等,从而需构造全等三角形。构造公共边是常添的辅助线构造公共边是常添的辅助线1234已知:已知:AC=AD,BC=BD,AC=AD,BC=BD,求证:

12、求证:ABAB是是DACDAC的平分线的平分线. . AC=AD( ) AC=AD( )BC=BD( )BC=BD( )AB=AB( )AB=AB( )ABCABCABD( )ABD( )1=21=2ABAB是是DACDAC的平分线的平分线A AB BC CD D1 12 2(全等三角形的对应角相等)(全等三角形的对应角相等)已知已知已知已知公共边公共边SSSSSS(角平分线定义)(角平分线定义)证明证明: :在在ABCABC和和ABDABD中中1.边边边公理:有三边对应相等的两个三角形全等 简写成“边边边”(SSS)2.2.边边边公理发现过程中用到的数学方法(包边边边公理发现过程中用到的数学

13、方法(包括画图、猜想、分析、归纳等括画图、猜想、分析、归纳等.).)3.3.边边边公理在应用中用到的数学方法边边边公理在应用中用到的数学方法: : 证明线段证明线段( (或角或角) )相等相等 转转 化化 证明线段证明线段( (或角或角) )所所在的两个三角形全等在的两个三角形全等. .两个三角形全等的注意点:两个三角形全等的注意点:1. 1. 说明两三角形全等所需的条件应按对应边的顺序书写说明两三角形全等所需的条件应按对应边的顺序书写. .2. 2. 结论中所出现的边必须在所证明的两个三角形中结论中所出现的边必须在所证明的两个三角形中. . 小结小结: :3. 有时需添辅助线有时需添辅助线(如如:造公共边造公共边)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁