《2022年双曲线教学设计.docx》由会员分享,可在线阅读,更多相关《2022年双曲线教学设计.docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022年双曲线教学设计双曲线教学设计作为一位不辞辛苦的人民老师,通常须要用到教学设计来协助教学,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。那么写教学设计须要留意哪些问题呢?下面是我帮大家整理的双曲线教学设计,仅供参考,欢迎大家阅读。双曲线教学设计1一、教材分析:双曲线及其标准方程是全日制一般高级中学教科书(人教A版)选修2-1其次章第三节内容,双曲线是平面解析几何的又一重要曲线,本节课既是对解析几何学习方法的巩固,又是对运动,改变和对立统一的进一步相识,从整体上进一步相识解析几何,建立解析几何的数学思想。双曲线是三种圆锥曲线中最困难的一种,传
2、统的处理方法是先学习椭圆,再学习双曲线,通过对比椭圆学问来学习,降低难度,便于学生学习驾驭。教材为双曲线及其标准方程支配两课时内容,本文是第一课时,本课的主要内容是:(1)探求轨迹(双曲线);(2)学习双曲线定义;(3)推导双曲线标准方程;二、教学目标:1、认知目标:驾驭双曲线的定义、标准方程,了解双曲线及相关概念;2、实力目标:通过学生的操作和协作探讨,培育学生的实践实力和分析问题、解决问题的实力,通过学问的再现培育学生的创新实力和创新意识。3、情感目标:让学生体会学问产生的全过程,体会解析法的思想。通过画双曲线的几何图形让学生感知几何图形曲线美、简洁美、对称美,培育学生学习数学的爱好三、教
3、学重难点重点:双曲线中a,b,c之间的关系。难点:双曲线的标准方程,双曲线及其标准方程的探求;领悟解析法思想四、教学方式:多媒体演示,小组探讨。五、教学打算:多媒体课件,六、教学设想:1通过师生的相互“协作”,以提问的形式完成本堂课七、教学过程:环节内容教学双边活动设计意图复习问题问题1:椭圆的定义是什么?(哪几个关键点)问题2:椭圆的标准方程是怎样的?问题3:如何作椭圆?问题4:性质:学生回顾,老师补充订正回顾椭圆学习过程,本身具有复习提高价值此处侧重于类比探讨椭圆的思想和方法,期望在双曲线学习中有一种方法引领。引入新课:到两个定点的距离差为定值的动点轨迹?过渡探求轨迹问题:我们用什么方法来
4、探求(画出)轨迹图形?用几何画板演示拉链的轨迹:同样的,也有设问:定点与动点不在同一平面内,能否得到双曲线?请学生回答:不能指出必需“在平面内”动点M到定点A与B两点的距离的差有什么关系?请学生回答,M到A与B的距离的差的肯定值相等,否则只表示双曲线的一支,即是一个常数这个常是否会大于或者等AB?请学生回答,应小于AB且大于零当常数2a=AB时,轨迹是以A、B为端点的两条射线;当常数2aAB时,无轨迹小组探讨试验演示提问通过提出问题,让学生探讨问题,并尝试解决问题。让学生了解双曲线的前提条件,并培育学生的全面思索的实力。感受曲线,解读定义:演示得到的图形是双曲线(一部分);归纳双曲线的定义:平
5、面内,到两个定点的距离的差的肯定值为常数(小于两定点距离)的点的轨迹叫做双曲线。这两个定点叫做双曲线的焦点,两焦点的距离叫做双曲线的焦距。数学简记:学生读课本并分析其中的关键点通过阅读和关键点分析,让学生学会读书,学会分析书,从而理解书。推导方程,相识特性:2(1)建系以两定点所在直线为x轴,其中点为原点,建立直角坐标系xOy设为双曲线上随意一点,双曲线的焦距为,则设点M与A、B的距离的差的肯定值等于常数。(2)点的集合由定义可知,双曲线上点的集合满意MA-MB=2a(3)利用坐标关系化代数方程(4)化简方程(5)双曲线的标准方程:方程形式:焦点在x轴上:焦点在y轴上:焦点的中点在原点(中心在
6、原点)(6)数量特征:(2a)(实轴长),(2c) (焦距)指出:a,b,c的含义.注:(1)双曲线方程中,a不肯定大于b;(2)假如x的系数是正的,那么焦点在x轴上,假如y的系数是正的,那么焦点在y轴上,有别于椭圆通过比较分母的大小来判定焦点的位置.(3)双曲线标准方程中a,b,c的关系不同于椭圆方程沟通:建系的随意性与合理性由一位学生上黑板演示,老师巡察,通过对双曲线方程的化简,提高学生的演算实力。可留意大部分学生写得是否正确。类比椭圆,相识共同点,辨别不同。应用方程,体验思想 :例1:说明:椭圆与双曲线的焦点相同例2:求到两定点A、B的距离的差的肯定值为6的点的轨迹方程?假如把上面的6改
7、为10,其他条件不变,会出现什么状况?假如改为12呢?老师分析,由学生分析,老师板书及补充。可以进一步巩固理解双曲线的定义。回顾过程,归纳小结双曲线定义的要点,标准方程的形式课后练习书本习题八、自我教学评价在教学过程中注意学问,实力的融合,努力挖掘内容的本质和联系,以学生3为主体,沿着学生的思维方向一步步引入新学问,顺当完成学问的吸纳,利用多媒体演示过程,能给学生一种形象上的汲取,寓思想于教学中。九、教学反思和回顾在整个教学中,利用类比椭圆方程定义的形成过程自然进入双曲线定义的教学状态中,并实行多提问的形式,让每个学生思索问题,回答问题,给他们思索的空间,培育他们思索的习惯,让学生与老师互动,
8、沟通探讨学习过程中的问题,可以充分提高学生的学习主动性与他们的自信念,在今后的教学中,我要更多的让学生来演示,充分发挥学生的主体作用,让学生真正体会学问的形成过程。双曲线教学设计2双曲线及其标准方程一、学习目标::1、通过教学,使学生熟记双曲线的定义及其标准方程,并理解这肯定义及其标准方程的探究推导过程.2、理解并熟记双曲线的焦点位置与两类标准方程之间的对应关系.:通过“试验视察”、“思索探究”与“合作沟通”等一系列数学活动,培育学生视察、类比、分析、概括的实力以及逻辑思维的实力,使学生学会数学思索与推理,学会反思与感悟,形成良好的数学观.:通过实例的引入和剖析,让学生再一次感受到数学来源于实
9、践又反作用于实践;生活中到处有数学.二、学情分析:1、在学生已学习椭圆的定义及其标准方程和驾驭“曲线的方程”与“方程的曲线”的概念之后,学习双曲线定义及其标准方程,符合学生的认知规律,学生有实力学好本节内容;2、由于学生数学运算实力不强,分析问题、解决问题的实力,逻辑推理实力,思维实力都比较弱,所以在设计的时候往往要多作铺垫,扫清他们学习上的障碍,爱护他们学习的主动性,增加学习的主动性.三、重点难点:教学重点:双曲线的定义、标准方程教学难点:双曲线定义中关于肯定值,2a四、教学过程:1、以平面截圆锥为模型,让学生相识双曲线,相识圆锥曲线;2、视察生活中的双曲线;探究一活动1:类比椭圆的学习,思
10、索:探讨双曲线,应当探讨什么?怎么探讨?从而驾驭本节课的主线:试验、双曲线的定义、建系、求双曲线的标准方程;活动二:数学试验:(1)取一条拉链,拉开它的一部分,(2)在拉链拉开的两边上各取一点,分别固定在点F1,F2上,(3)把笔尖放在拉头点M处,随着拉链渐渐拉开或者闭拢,笔尖所经过的点就画出一条曲线。(4)若拉链上被固定的两点互换,则出现什么状况?学生活动:六人一组,进行试验,展示试验成果:学生试验可能出现的状况:画出双曲线的居多,但还是有画出中垂线,或者两条射线的可能,学生展示,小组同学说明,为什么会出现这种状况?活动三:几何画板演示,得到双曲线的定义:老师演示,学生思索:引导学生结合试验
11、分析,得出双曲线上的点满意的条件,给出双曲线的定义双曲线:平面内到两定点的距离的距离的差的肯定值等于定长2a(小于两定点F1F2的距离)的点的轨迹叫做双曲线。两定点F1F2叫做双曲线的焦点两点间F1F2的距离叫做焦距在双曲线定义中,请同学们思索下面问题: 1:联想到椭圆的定义,你是否感到双曲线中的常数2a也须要某种限制?为什么? 2:若2a=2c,则M点的轨迹又会是什么呢?又2a2c呢?强调:2a大于|F1F2时轨迹不存在2a等于|F1F2时,时两条射线。所以,轨迹为双曲线,必需限制2a活动四:探究双曲线标准方程:1、类比:类比椭圆标准方程的建立过程(用屏幕显示图形),让学生仔细捉摸坐标系的位
12、置特点(力求使其方程形式最简洁).2、合作:师生合作共同推导双曲线的标准方程.(学生推导,然后老师归纳)按下列四步骤进行:建系、设点、列式、化简从而得出了双曲线的标准方程.双曲线标准方程:焦点在x轴上(a0,b0)3、探究:在建立椭圆的标准方程时,选取不同的坐标系我们得到了不同形式的标准方程.那么双曲线的标准方程还有哪些形式?222在y轴上(a0,b0)其中:c=a+b活动五:归纳、总结活动六:典例分析例1:已知双曲线的两个焦点分别为F1(-5,0),F2(5,0),双曲线上的点P到F1、F2距离差的肯定值等于6,求双曲线标准方程.变式(1):已知双曲线的两个焦点分别为F1(-5,0),F2(
13、5,0),双曲线上的点P到F1、F2距离差等于6,求双曲线标准方程.变式(2) :若两定点为|F1F2|=10则轨迹方程如何?感悟: 求给定双曲线的标准方程的基本方法是:待定系数法.(若焦点不定,则要留意分类探讨的思想.)活动七:小结1.本节课学习的主要学问是什么? 2.本节课涉及到了哪些数学思想方法?课后作业:必做题:课本55页练习2,3选做题:课本61页习题A组2双曲线教学设计3一、教学目标(一)学问教学点使学生理解并驾驭双曲线的几何性质,并能从双曲线的标准方程动身,推导出这些性质,并能详细估计双曲线的形态特征。(二)实力训练点在与椭圆的性质的类比中获得双曲线的性质,从而培育学生分析、归纳
14、、推理等实力。(三)学科渗透点使学生进一步驾驭利用方程探讨曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解,这样才能解决双曲线中的弦、最值等问题。二、教材分析1、重点:双曲线的几何性质及初步运用。(解决方法:引导学生类比椭圆的几何性质得出,至于渐近线引导学生证明。)2、难点:双曲线的渐近线方程的导出和论证。(解决方法:先引导学生视察以原点为中心,2a、2b长为邻边的.矩形的两条对角线,再论证这两条对角线即为双曲线的渐近线。)3、疑点:双曲线的渐近线的证明。(解决方法:通过具体讲解。)三、活动设计提问、类比、重点讲解、演板、讲解并归纳、小结。四、教学过程(一)复习提问引入新课1、
15、椭圆有哪些几何性质,是如何探讨的?请一同学回答。应为:范围、对称性、顶点、离心率,是从标准方程探讨的。2、双曲线的两种标准方程是什么?再请一同学回答。应为:中心在原点、焦点在x轴上的双曲线的标下面我们类比椭圆的几何性质来探讨它的几何性质。(二)类比联想得出性质(性质13)引导学生完成下列关于椭圆与双曲线性质的表格(让学生回答,老师引导、启发、订正并板书)。(三)问题之中导出渐近线(性质4)在学习椭圆时,以原点为中心,2a、2b为邻边的矩形,对于估计仍以原点为中心,2a、2b为邻边作一矩形(板书图形),那么双曲线和这个矩形有什么关系?这个矩形对于估计和画出双曲线简图(图226)有什么指导意义?这
16、些问题不要求学生回答,只引起学生类比联想。接着再提出问题:当a、b为已知时,这个矩形的两条对角线的方程是什么?下面,我们来证明它:双曲线在第一象限的部分可写成:当x渐渐增大时,|MN|渐渐减小,x无限增大,|MN|接近于零,|MQ|也接近于零,就是说,双曲线在第一象限的部分从射线ON的下方渐渐接近于射线ON。在其他象限内也可以证明类似的状况。现在来看看实轴在y轴上的双曲线的渐近线方程是怎样的?由于焦点在y轴上的双曲线方程是由焦点在x轴上的双曲线方程,将x、y字母对调所得到,自然前者渐近线方程也可由后者渐近线方程将x、y字。这样,我们就完满地解决了画双曲线远处趋向问题,从而可比较精,再描几个点,
17、就可以随后画出比较精确的双曲线。(四)顺其自然介绍离心率(性质5)由于正确相识了渐近线的概念,对于离心率的直观意义也就简单驾驭了,为此,介绍一下双曲线的离心率以及它对双曲线的形态的影响:变得开阔,从而得出:双曲线的离心率越大,它的开口就越开阔。这时,老师指出:焦点在y轴上的双曲线的几何性质可以类似得出,双曲线的几何性质与坐标系的选择无关,即不随坐标系的变更而变更。(五)练习与例题1、求双曲线9y216x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程。请一学生演板,其他同学练习,老师巡察,练习毕予以订正。由此可知,实半轴长a=4,虚半轴长b=3。焦点坐标是(0,5),(0,5)。本
18、题实质上是双曲线的其次定义,要重点讲解并加以归纳小结。解:设d是点M到直线l的距离,依据题意,所求轨迹就是集合:化简得:(c2a2)x2a2y2=a2(c2a2)。这就是双曲线的标准方程。由此例不难归纳出双曲线的其次定义。(六)双曲线的其次定义1、定义(由学生归纳给出)平面内点M与肯定点的距离和它到一条直线的距离的比是常数e=叫做双曲线的准线,常数e是双曲线的离心率。2、说明(七)小结(由学生课后完成)将双曲线的几何性质按两种标准方程形式列表小结。五、布置作业1、已知双曲线方程如下,求它们的两个焦点、离心率e和渐近线方程。(1)16x29y2=144;(2)16x29y2=144。2、求双曲线
19、的标准方程:(1)实轴的长是10,虚轴长是8,焦点在x轴上;(2)焦距是10,虚轴长是8,焦点在y轴上;曲线的方程。点到两准线及右焦点的距离。作业答案:距离为7双曲线教学设计41、驾驭双曲线的定义、几何图形和标准方程;2、知道它的简洁几何性质。1双曲线的定义(1)平面内与两定点F1,F2的常数(小于)的点的轨迹叫做双曲线注:当2a|F1F2|时,P点的轨迹是2a|F1F2|时,P点轨迹不存在2双曲线的标准方程(1)标准方程:,焦点在轴上;焦点在轴上其中:a0,b0,(2)双曲线的标准方程的统一形式:3双曲线的几何性质(对进行探讨)(1)范围:,(2)对称性:对称轴方程为;对称中心为(3)顶点坐
20、标为,焦点坐标为,实轴长为,虚轴长为,渐近线方程为(4)离心率=,且,:1、已知双曲线的离心率为2,焦点是(4,0),(4,0),则双曲线方程为。2、课标文数20xx安徽卷双曲线2x2y28的实轴长是()A2B22C4D423、课标文数20xx江西卷若双曲线y216x2m1的离心率e2,则m_4、课标文数20xx北京卷已知双曲线x2y2b21(b0)的一条渐近线的方程为y2x,则b_。例题分析:例1:求符合下列条件的双曲线的标准方程(1)经过点A(2,)、B(3,2)(2)经过点(3,),离心率e=。例2已知:双曲线的方程是16x29y2144(1)、求此双曲线的焦点坐标、离心率和渐进线方程;
21、(2)、设F和F是双曲线的左右焦点,点P在双曲线上且=32,求FPF的大小。1、过双曲线x2y2=8的左焦点F1有一条弦PQ在左支上,若|PQ|=7,F2是双曲线的右焦点,则PF2Q的周长是。2、已知=1的离心率为2,焦点与椭圆+=1的焦点相同,求双曲线的方程。3、设F和F是双曲线x21的左右焦点,点P在双曲线上且3=4,求PFF的面积。4、已知动圆M与圆C:(+4)+=2外切,与圆C:(4)+=2内切,求动圆圆心M的轨迹方程。第20页 共20页第 20 页 共 20 页第 20 页 共 20 页第 20 页 共 20 页第 20 页 共 20 页第 20 页 共 20 页第 20 页 共 20 页第 20 页 共 20 页第 20 页 共 20 页第 20 页 共 20 页第 20 页 共 20 页