《2022年关于高中数学说课稿4篇.docx》由会员分享,可在线阅读,更多相关《2022年关于高中数学说课稿4篇.docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2022年关于高中数学说课稿4篇关于中学数学说课稿4篇作为一名优秀的教化工作者,经常要依据教学须要编写说课稿,说课稿可以帮助我们提高教学效果。那要怎么写好说课稿呢?下面是我整理的中学数学说课稿4篇,欢迎大家借鉴与参考,希望对大家有所帮助。中学数学说课稿 篇1一、说教材1.从在教材中的地位与作用来看等比数列的前n项和是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类探讨、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.2.从学生认知角度看从学生的思维特点看,很简单把本节内容与等差数列前n
2、项和从公式的形成、特点等方面进行类比,这是主动因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特别状况,学生往往简单忽视,尤其是在后面运用的过程中简单出错.3.学情分析教学对象是刚进入中学的学生,虽然具有肯定的分析问题和解决问题的实力,逻辑思维实力也初步形成,但由于年龄的缘由,思维尽管活跃、灵敏,却缺乏冷静、深刻,因此片面、不严谨.4.重点、难点教学重点:公式的推导、公式的特点和公式的运用.教学难点:公式的推导方法和公式的敏捷运用.公式推导所运用的“错位相减法”是中学数学数列求和方法中最常用的方法之一,它蕴含
3、了重要的数学思想,所以既是重点也是难点.二、说目标学问与技能目标:理解并驾驭等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题.过程与方法目标:通过对公式推导方法的探究与发觉,向学生渗透特别到一般、类比与转化、分类探讨等数学思想,培育学生视察、比较、抽象、概括等逻辑思维实力和逆向思维的实力.情感与看法价值观:通过对公式推导方法的探究与发觉,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点.三、说过程学生是认知的主体,设计教学过程必需遵循学生的认知规律,尽可能地让学生去经验学问的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:
4、1.创设情境,提出问题在古印度,有个名叫西萨的人,独创了国际象棋,当时的印度国王大为赞许,对他说:我可以满意你的任何要求.西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,其次格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格.国王令宫廷数学家计算,结果出来后,国王大吃一惊.为什么呢?设计意图:设计这个情境目的是在引入课题的同时激发学生的爱好,调动学习的主动性.故事内容紧扣本节课的主题与重点.此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数.带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和.这时我对他们的这种思路赐予确定.设
5、计意图:在实际教学中,由于受课堂时间限制,老师舍不得花时间让学生去做所谓的“无用功”,急连忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,老师为什么不相加而立刻相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造学问形成过程的氛围,突破学生学习的障碍.同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔.2.师生互动,探究问题在确定他们的思路后,我接着问:1,2,22,263是什么数列?有何特征?应归结为什么数学问题呢?探讨1:,记为(1)式,留意视察每一项的特征,有何联系?(学生会发觉,
6、后一项都是前一项的2倍)探讨2:假如我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,记为(2)式.比较(1)(2)两式,你有什么发觉?设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在老师看来这是“天经地义”的,但在学生看来却是“不行思议”的,因此教学中应着力在这儿做文章,从而抓住培育学生的辩证思维实力的良好契机.经过比较、探讨,学生发觉:(1)、(2)两式有很多相同的项,把两式相减,相同的项就消去了,得到:.老师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?设计意图:经过繁难的计算之苦后,突然发觉
7、上述解法,不禁惊呼:真是太简洁了!让学生在探究过程中,充分感受到胜利的情感体验,从而增加学习数学的爱好和学好数学的信念.3.类比联想,解决问题这时我再顺势引导学生将结论一般化,这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导.设计意图:在老师的指导下,让学生从特别到一般,从已知到未知,步步深化,让学生自己探究公式,从而体验到学习的开心和成就感.对不对?这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?(这里引导学生对q进行分类探讨,得出公式,同时为后面的例题教学打下基础.)再次追问:结合等比数列的通项公式an=a1qn-1,如何把sn用a1、an
8、、q表示出来?(引导学生得出公式的另一形式)设计意图:通过反问精讲,一方面使学生加深对学问的相识,完善学问结构,另一方面使学生由简洁地仿照和接受,变为对学问的主动相识,从而进一步提高分析、类比和综合的实力.这一环节特别重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用.4.探讨沟通,延长拓展中学数学说课稿 篇2各位评委老师好:今日我说课的题目是是必修章第节的内容,我将以新课程标准的理念指导本节课的教学,从教材分析,教法学法,教学过程,教学评价四个方面加以说明。一、 教材分析是在学习了基础上进一步探讨 并为后面学习 做打算,在整个中学数学中起着承上启下的作用,因此本节内容非常重要。
9、依据新课标要求和学生实际水平我制定以下教学目标1、 学问实力目标:使学生理解驾驭2、 过程方法目标:通过视察归纳抽象概括使学生构建领悟 数学思想,培育 实力3、 情感看法价值观目标:通过学习体验数学的科学价值和应用价值,培育擅长视察勇于思索的学习习惯和严谨 的科学看法依据教学目标、本节特点和学生实际状况本节重点是 ,由于学生对 缺少感性相识,所以本节课的重点是二、教法学法依据老师主导地位和学生主体地位相统一的规律,我采纳引导发觉法为本节课的主要教学方法并借助多媒体为协助手段。在老师点拨下,学生自主探究、合作沟通来寻求解决问题的方法。三、 教学过程四、 教学程序及设想1、由引入:把教学内容转化为
10、具有潜在意义的问题,让学生产生剧烈的问题意识,使学生的整个学习过程成为“猜想”,继而惊慌地深思,期盼找寻理由和证明过程。 在实际状况下进行学习,可以使学生利用已有学问与阅历,同化和索引出当前学习的新学问,这样获得的学问,不但易于保持,而且易于迁移到生疏的问题情境中。对于本题:2、由实例得出本课新的学问点是:3、讲解例题。我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而刚好对解题方法和规律进行概括,有利于发展学生的思维实力。在题中:4、实力训练。课后练习使学生能巩固艳羡自觉运用所学学问与解题思想方法。5、总结结论,强化相识。学问性内容的小结,可把课堂教学传授的学问尽快化为学生的素养;数学
11、思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且渐渐培育学生的良好的特性品质目标。6、变式延长,进行重构。重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对学问的串联、累积、加工,从而达到举一反三的效果。五、教学评价学生学习的学习结果评价当然重要,但是更重要的是学生学习的过程评价,老师应当高度重视学生学习过程中的参加度、自信念、团队精神合作意识数学实力的发觉,以及学习的爱好和成就感。中学数学说课稿 篇3各位老师:大家好!我叫*,来自*。我说课的题目是概率的基本性质,内容选自于中学教材新课程人教A版必修3第三章第一节,课时支配为三个课时,本节课内容为第
12、三课时。下面我将从教材分析、教学目标分析、教法分析、教学过程分析四大方面来阐述我对这节课的分析和设计:一、教材分析1、教材所处的地位和作用本节课主要包含了两部分内容:一是事务的关系与运算,二是概率的基本性质,多以基本概念和性质为主。它是本册其次章统计的延长,又是后面古典概型及几何概型的基础。在整个教学中起到承上启下的作用。同时也是新课改以来考查的热点之一。2、教学的重点和难点重点:概率的加法公式及其应用;事务的关系与运算。难点:互斥事务与对立事务的区分与联系二、教学目标分析1学问与技能目标了解随机事务间的基本关系与运算;驾驭概率的几个基本性质,并会用其解决简洁的概率问题。2、过程与方法:通过视
13、察、类比、归纳培育学生运用数学学问的综合实力;通过学生自主探究,合作探究培育学生的动手探究的实力。3、情感看法与价值观:通过数学活动,了解教学与实际生活的亲密联系,感受数学学问应用于现实世界的详细情境,从而激发学习数学的情趣。三、教法分析采纳试验视察、质疑启发、类比联想、探究归纳的教学方法。四、教学过程分析1、创设情境,引入新课在掷骰子的试验中,我们可以定义很多事务,如:c1=出现的点数1,c2=出现的点数2c3=出现的点数3,c4=出现的点数4c5=出现的点数5,c6=出现的点数6D1=出现的点数不大于1D2=出现的点数大于3D3=出现的点数小于5,E=出现的点数小于7f=出现的点数大于6,
14、G=出现的点数为偶数H=出现的点数为奇数以引入例中的事务c1和事务H,事务c1和事务D1为例讲授事务之的包含关系和相等关系。从以上两个关系学生不难发觉事务间的关系与集合间的关系相类似。进而引导学生思索,是否可以把事务和集合对应起来。设计意图引出我们接下来要学习的主要内容:事务之间的关系与运算2、探究新知事务的关系与运算经过上面的思索,我们得出:试验的可能结果的全体全集每一个事务子集这样我们就把事务和集合对应起来了,用已有的集合间关系来分析事务间的关系。集合的并两事务的并事务(和事务)集合的交两事务的交事务(积事务)在此过程中要留意帮助学生区分集合关系与事务关系之间的不同。(例如:两集合AB,表
15、示此集合中的随意元素或者属于集合或者属于集合;而两事务和的并事务AB发生,表示或者事务发生,或者事务发生。)设计意图为更好地理解互斥事务和对立事务打下基础,思索:若只掷一次骰子,则事务c1和事务c2有可能同时发生么?在掷骰子试验中事务G和事务H是否肯定有一个会发生?设计意图这两道思索题都很简单得到答案,主要目的是为引出接下来将要学习的互斥事务和对立事务,让学生从实际案例中体验它们各自的特征以及它们之间的区分与联系。总结出互斥事务和对立事务的概念,并通过多媒体的图形演示使学生们能更好地理解它们的特征以及它们之间的区分与联系。练习:通过多媒体显示两道练习,目的是让学生们能够刚好巩固对互斥事务和对立
16、事务的学习,加深理解。概率的基本性质:回顾:频率频数/试验的次数我们知道当试验次数足够大时,用频率来估计概率,由于频率在01之间,所以,可以得到概率的基本性质、(通过对频率的理解并结合前面投硬币的试验来总结出概率的基本性质,师生共同沟通得出结果)3、典型例题探究例1一个射手进行一次射击,试推断下列事务哪些是互斥事务?哪些是对立事务?事务A:命中环数大于7环;事务B:命中环数为10环;事务c:命中环数小于6环;事务D:命中环数为6、7、8、9、10环、分析:要推断所给事务是对立还是互斥,首先将两个概念的联系与区分弄清晰例2假如从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事务A)的概
17、率是14,取到方块(事务B)的概率是14,问:(1)取到红色牌(事务c)的概率是多少?(2)取到黑色牌(事务D)的概率是多少?分析:事务c是事务A与事务B的并,且A与B互斥,因此可用互斥事务的概率和公式求解;事务c与事务D是对立事务,因此P(D)=1P(c)设计意图通过这两道例题,进一步巩固学生对本节课学问的驾驭,并将所学学问应用到实际解决问题中去。4、课堂小结理解事务的关系和运算驾驭概率的基本性质设计意图小结是引导学生对问题进行回味与深化,使学问成为系统。让学生尝试小结,提高学生的总结实力和语言表达实力。老师补充帮助学生全面地理解,驾驭新学问。5、布置作业习题3、1A1、3、4设计意图课后作
18、业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和驾驭所学内容。五、板书设计概率的基本性质一、事务间的关系和运算二、概率的基本性质三、例1的板书区例2的板书区四、规律性质总结中学数学说课稿 篇4本节课讲解并描述的是人教版高一数学(上)3.2等差数列(第一课时)的内容。一、教材分析1、教材的地位和作用:数列是中学数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特别的函数与函数思想密不行分;另一方面,学习数列也为进一步学习数列的极限等内容做好打算。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法通项公式和递推公式的基础上,对
19、数列的学问进一步深化和拓广。同时等差数列也为今后学习等比数列供应了学习对比的依据。2、教学目标依据教学大纲的要求和学生的实际水平,确定了本次课的教学目标a在学问上:理解并驾驭等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。b在实力上:培育学生视察、分析、归纳、推理的实力;在领悟函数与数列关系的前提下,把探讨函数的方法迁移来探讨数列,培育学生的学问、方法迁移实力;通过阶梯性练习,提高学生分析问题和解决问题的实力。c在情感上:通过对等差数列的探讨,培育学生主动探究、勇于发觉的求知精神;养成细心视察、仔细分析、擅长总结的良好思维习惯。3、教学重点和难点
20、依据教学大纲的要求我确定本节课的教学重点为:等差数列的概念。等差数列的通项公式的推导过程及应用。由于学生第一次接触不完全归纳法,对此并不熟识因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为生疏,因此用数学思想解决实际问题是本节课的另一个难点。二、学情教法分析:对于三中的高一学生,学问阅历已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维实力和演绎推理实力,所以我在授课时注意引导、启发、探讨和探讨以符合这类学生的心理发展特点,从而促进思维实力的进一步发展。针对中学生这一思维特点和心理特征,本节课我采纳启发式、探讨式以及讲练结合的教
21、学方法,通过问题激发学生求知欲,使学生主动参加数学实践活动,以独立思索和相互沟通的形式,在老师的指导下发觉、分析和解决问题。三、学法指导:在引导分析时,留出学生的思索空间,让学生去联想、探究,同时激励学生大胆质疑,围绕中心各抒己见,把思路方法和须要解决的问题弄清。四、教学程序本节课的教学过程由(一)复习引入(二)新课探究(三)应用举例(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。(一)复习引入:1.从函数观点看,数列可看作是定义域为_对应的一列函数值,从而数列的通项公式也就是相应函数的_。(N;解析式)通过练习1复习上节内容,为本节课用函数思想探讨数列问题作打算。2.小明目前会
22、100个单词,他她准备从今日起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为:100,98,96,94,92 3. 小芳只会5个单词,他确定从今日起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为5,10,15,20,25 通过练习2和3引出两个详细的.等差数列,初步相识等差数列的特征,为后面的概念学习建立基础,为学习新学问创设问题情境,激发学生的求知欲。由学生视察两个数列特点,引出等差数列的概念,对问题的总结又培育学生由详细到抽象、由特别到一般的认知实力。(二) 新课探究1、由引入自然的给出等差数列的概念:假如一个数列,从其次项起先它的
23、每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。强调: “从其次项起”满意条件;公差d肯定是由后项减前项所得;每一项与它的前一项的差必需是同一个常数(强调“同一个常数” );在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:an+1-an=d (n1)同时为了协作概念的理解,我找了5组数列,由学生推断是否为等差数列,是等差数列的找出公差。1. 9 ,8,7,6,5,4,?; d=-12. 0.70,0.71,0.72,0.73,0.74?; d=0.013. 0,0,0,0,0,0,?.; d=04. 1,2
24、,3,2,3,4,?;5. 1,0,1,0,1,?其中第一个数列公差0,第三个数列公差=0由此强调:公差可以是正数、负数,也可以是02、其次个重点部分为等差数列的通项公式在归纳等差数列通项公式中,我采纳探讨式的教学方法。给出等差数列的首项,公差d,由学生探讨分组探讨a4的通项公式。通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。整个过程由学生完成,通过相互探讨的方式既培育了学生的协作意识又化解了教学难点。若一等差数列an 的首项是a1,公差是d,则据其定义可得:a2 - a1 =d 即: a2 =a1 +da3 a2 =d 即: a3 =a2 +d = a1 +2da
25、4 a3 =d 即: a4 =a3 +d = a1 +3d?猜想: a40 = a1 +39d,进而归纳出等差数列的通项公式:an=a1+(n-1)d此时指出:这种求通项公式的方法叫不完全归纳法,这种导出公式的方法不够严密,为了培育学生严谨的学习看法,在这里向学生介绍另外一种求数列通项公式的方法-迭加法:a2 a1 =da3 a2 =da4 a3 =d?an an-1=d将这(n-1)个等式左右两边分别相加,就可以得到 an a1= (n-1) d即 an= a1+(n-1) d(1)当n=1时,(1)也成立,所以对一切nN,上面的公式都成立因此它就是等差数列an的通项公式。在迭加法的证明过程
26、中,我采纳启发式教学方法。利用等差数列概念启发学生写出n-1个等式。比照已归纳出的通项公式启发学生想出将n-1个等式相加。证出通项公式。在这里通过该学问点引入迭加法这一数学思想,逐步达到“注意方法,凸现思想” 的教学要求接着举例说明:若一个等差数列an的首项是,公差是,得出这个数列的通项公式是:an=1+(n-1)2 ,即an=2n-1 以此来巩固等差数列通项公式运用同时要求画出该数列图象,由此说明等差数列是关于正整数n一次函数,其图像是匀称排开的无穷多个孤立点。用函数的思想来探讨数列,使数列的性质显现得更加清晰。(三)应用举例这一环节是使学生通过例题和练习,增加对通项公式含义的理解以及对通项
27、公式的运用,提高解决实际问题的实力。通过例1和例2向学生表明:要用运动改变的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的部重量已知时,可依据该公式求出另一部重量。例1 (1)求等差数列8,5,2,?的第20项;第30项;第40项(2)-401是不是等差数列-5,-9,-13,?的项?假如是,是第几项?在第一问中我添加了计算第30项和第40项以加强巩固等差数列通项公式;其次问事实上是求正整数解的问题,而关键是求出数列的通项公式an.例2 在等差数列an中,已知a5=10,a12 =31,求首项a1与公差d。在前面例1的基础上将例2当作练习作为对通项公式的巩固例3 是一
28、个实际建模问题建立房屋时要设计楼梯,已知某大楼第2层的楼底离地面的高度为3米,第三层离地面5.8米,若楼梯设计为等高的16级台阶,问每级台阶高为多少米?这道题我采纳启发式和探讨式相结合的教学方法。启发学生留意每级台阶“等高”使学生想到每级台阶离地面的高度构成等差数列,引导学生将该实际问题转化为数学模型-等差数列:(学生探讨分析,分别演板,老师评析问题。问题可能出现在:项数学生认为是16项,应明确a1为第2层的楼底离地面的高度,a2表示第一级台阶离地面的高度而第16级台阶离地面高度为a17,可用课件展示实际楼梯图以化解难点)。设置此题的目的:1.加强同学们对应用题的综合分析实力,2.通过数学实际
29、问题引出等差数列问题,激发了学生的爱好;3.再者通过数学实例展示了“从实际问题动身经抽象概括建立数学模型,最终还原说明实际问题的“数学建模”的数学思想方法(四)反馈练习1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟识通项公式,对学生进行基本技能训练。2、书上例3)梯子的最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。目的:对学生加强建模思想训练。3、若数例an 是等差数列,若 bn = k an ,(k为常数)试证明:数列bn是等差数列此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数
30、列的概念。(五)归纳小结(由学生总结这节课的收获)1.等差数列的概念及数学表达式强调关键字:从其次项起先它的每一项与前一项之差都等于同一常数2.等差数列的通项公式 an= a1+(n-1) d会知三求一3用“数学建模”思想方法解决实际问题(六)布置作业必做题:课本P114 习题3.2第2,6 题选做题:已知等差数列an的首项a=-24,从第10项起先为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满意不同层次的学生需求)五、板书设计在板书中突出本节重点,将强调的地方如定义中,“从其次项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。第27页 共27页第 27 页 共 27 页第 27 页 共 27 页第 27 页 共 27 页第 27 页 共 27 页第 27 页 共 27 页第 27 页 共 27 页第 27 页 共 27 页第 27 页 共 27 页第 27 页 共 27 页第 27 页 共 27 页