《第六章+弯曲应力.ppt》由会员分享,可在线阅读,更多相关《第六章+弯曲应力.ppt(119页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、BilingualEdition,return,exit,Chapter6,Chapter6Stressesinbending,弯曲应力,61Purebending纯弯曲62Normalstressduringpurebending纯弯曲时的正应力63Normalstressduringtransversebending横力弯曲时的正应力64Shearingstressonthecrosssectionofthebeam梁横截面上的剪应力,GO,GO,GO,GO,Chapter6,65Somemeasurementsimprovingthebendingstrengthofbeam提高梁弯曲强
2、度的措施Exerciselessonsaboutthestressesinbending弯曲应力习题课AppendixGeometricpropertiesofthesection附录I截面的几何性质,GO,Chapter6,GO,GO,61Purebending,纯弯曲,1.Forward引言,Internalforcesonthecrosssectionofthebendingmember:,Shearingstresst,2.Theconceptofpurebending纯弯曲概念,Thebeaminwhichthereareonlybendingmoment(弯矩)andnoshear
3、ingforce(剪力)iscalledpurebending.,?,Chapter6,transversebending横力弯曲,SegmentAB:,SegmentCAandBD:,purebending纯弯曲,ThereisonlyMandnoFSinthecrosssection.,Chapter6,3.Thedeformationcharacterduringpurebending纯弯曲变形特征,Experimentofpurebendingofthebeam梁的纯弯曲实验:,Chapter6,Chapter6,Laterallinesarestillnormaltolongitud
4、inalslinesafterdeformation.,Laterallines(ac、bd)keepstraightlinesandrotatethroughsomeangles,Longitudinalstraightlineschangeintocurveswithupperfibersconstructedandlowerfiberselongated.,Afterdeformation,Assumptionanddeduction:,Thecrosssectionsremainstillplanesandonlyrotatethroughsomeangles.,Planeassump
5、tion平面假设,Thereareonlynormalstressesoncrosssections.,Longitudinalfibersofthebeamdonotpressoneachother.,Uniaxialstressedassumption单向拉压假定,Chapter6,Therefore,anarbitrarypointinthebeam,Thestressandstrainarenegativeintheupperportionofthemember(compression)andpositiveinthelowerportion(tension).,isatanuniax
6、ialstressedstate.,4.Twoconcepts两个概念,Neutrallayer中性层,Chapter6,Thislayeriscalledtheneutrallayer.中性层,Neutrallayer中性层,Neutralaxis中性轴,中性层、横截面及纵向对称面两两正交。,Chapter6,Think:Istheneutrallayerinthemiddle?,neutralaxis,纯弯曲时的正应力,62Normalstressduringpurebending,Studymethod,观察变形,应变分布,应力分布,应力表达式,Chapter6,1.Geometricr
7、elation,Afterdeformation:,Beforedeformation:,Conclusion:,Chapter6,theradiusofarc,withthedistanceyfromtheneutralsurface:,2.Physicalrelation,UsingHookeslaw:,Chapter6,weget,3.Staticrelation,y,对横截面上的内力系,有:,z轴通过形心,staticmomentw.r.t.z-axis,Chapter6,dA,productsofinertiaw.r.tyzaxes,Sincey-axisistheaxisofsym
8、metryofthecrosssection,x,Chapter6,y,Substituteitinto,ythedistancefromz-axis,Thescopeofapplicationoftheformula:,purebending,Chapter6,Mbendingmomentinthecrosssection,IZMomentofinertiaw.r.t.z-axis,z,在使用上式计算正应力时,通常以M、y的绝对值代入,求得应力的值,再根据变形判断应力的正负,以中性轴为界,凸出的一侧受拉(正),凹入的一侧受压(负)。,由于推导过程并未用到矩形截面条件,因而对截面为其它对称形状
9、的梁也都适用。,公式是否适用于一般情形(横力弯曲)?,Chapter6,横力弯曲时的正应力,63Normalstressduringtransversebending,横力弯曲时,横截面上有切应力,平面假设不再成立,此外,横力弯曲时纵向纤维无挤压假设也不成立.,由弹性力学的理论,有结论:,则用纯弯曲的正应力公式计算横力弯曲时的正应力有足够的精度。,当梁的长度l与横截面的高度h的比值:,的梁称为细长梁。,Chapter6,Comparewith:,Chapter6,Axialtensionandcompression:,torsion:,常用截面的抗弯截面系数:,y,y,y,y,z,z,z,z,
10、可查型钢表或用组合法求。,Chapter6,Thinking:Aphenomenoninengineering,Yes.,No!,承载能力大,承载能力小,Chapter6,Think:Thebeamofrectangularcrosssectioniscutfromaroundlog.,“凡梁之大小,各随其广分为三分,以二分为其厚”,李诫营造法式,于1100年著,d,Chapter6,Findtheratiothatmaximizesthesectionmodulusofthebeam.,由此得,英(T.Young)于1807年著自然哲学与机械技术讲义一书中指出矩形木梁的合理高宽比为:,令,时
11、,强度最大;,时,刚度最大;,Chapter6,Example1Acantileverbeambeamwiththesectionofcircularsections(D=200mm)isshowninthefigure.Trytodeterminethemaximumnormalstress.,purebending,Solution:,PlotthediagramofM,Determinethesectionmodulusofbending,Determinethemaximumstress,Chapter6,Example2Inexample1,ifbyahollowbeamofthes
12、ameandof=0.6,determinetheweightratiobetweenthesolidbeamandhollowbeam。,Determinetheoutsidediameter,dueto,theweightratio,withhollowsection,savematerials,Solution:,Chapter6,结论:梁的承载能力,不但取决于横截面面积,还取决于截面的形状。,思考工程中的另一现象:在钢结构中,一般总是采用型钢梁如工字形梁,盒形梁等,而不使用相同截面面积的方钢梁。,Chapter6,Example3Determinethemaximumtesileand
13、compressivestress.,Determinethereactionsofthesupports,20,11.25,C,Solution:,Plottheinternal-forcediagram,anddeterminetheinternalforceinthecriticalsection.,Chapter6,Determinethemomentofinertiaw.r.t.z-axis,Determinethestress,a,b,c,d,Thepossiblecriticalpoints:,b,c,d,Chapter6,思考:将此梁倒置,结果如何?,Chapter6,工程现象
14、3:塑性梁,截面设计成关于中性轴对称。脆性梁,截面设计成关于中性轴不对称。,Chapter6,ExplainhowtoplacethebeamhavingT-shapesectionismorereasonable.,Itisreasonabletoputthelargepartinthetopplace.,Chapter6,思考:为什么造房用的混凝土楼板在其下半部分布置了钢筋?使用时应如何放置?,Chapter6,思考:为什么放置的预制楼板发生了断裂?,Chapter6,结论:梁的承载能力,不但取决于横截面面积、截面的形状等因素,还取决于如何放置。,Chapter6,Brittlemater
15、ials,Plasticmaterial,Chapter6,Threekindsofcalculationsaboutthestrengthcanbemade:,Chapter6,Example4Abeamofvaryingsection:D=21cm,d=15cm,q=400kN/m,=100MPa.Checkthestrengthofthebeam.,90,40,40,PlottheMdiagram,Determinethereactionsofthesupports,Solution:,anddeterminethebendingmomentinthecriticalsection.,C
16、hapter6,Checkthestrength,Sothestrengthconditionisnotsatisfactory.,Chapter6,Example5Forthesteelbeamandloadingshow,170MPa,designthesizeofbeamwithcircularsectionsquaresectionrectangularsection,h/b=2Ishapedsection;,Solution:,40kN.m,Analysisofinternalforce,Mmax=40kN.m,(2)Strengthcalculation,Chapter6,tabl
17、e4ofAppendix,wefindNo.20aIshapedsteel,Wz237103mm3,A1:A2:A3:A4=1:0.894:0.709:0.252,weightratio:,Chapter6,:A4=3557mm2,Referringto,Example6Forthbeamandloadingshown,q=10kN/m,P=20kN,Iz=4.0107mm4,y1=140mm,y2=60mm,+=35MPa,-=140MPa,checkthestrengthofthebeam.,20KNm,10KNm,ofexternalforce:,(2)Analysisofinterna
18、lforce,sectionBandC,Solution:,Chapter6,(1)Analysis,criticalsection:,(3)determinethecriticalpoint:,maximumcompressivestresson:b,maximumtensilestresson:aord,B,C,Bsection:,Csection:,Chapter6,(4)Analysisofstress,Chapter6,(4)Checkthestrength:,Strengthofthisbeamsatisfiesrequest.,对于脆性材料必须要同时校核拉、压正应力强度。,危险截
19、面一般在峰值点或极值点,最好把各点的拉压最大应力计算出来,进行校核,不能遗漏。,思考:将截面倒置,结论如何?,Chapter6,Example7SteelbeamADismadebytwoNo.8channelsbacktobackasshowninthefigure,steelrodCBhasan20mmdiameter,0.5q,0.28q,Chapter6,determineq(thelargestallowablevalueofq)if=160MPa.,Solution:,(2)AnalysisofinternalforceplotMdiagram,accordingthestreng
20、thconditionofrod:,Chapter6,ReferringtotableC.9ofappendixC,wefindWz=225.3cm3,(3)determineq:,accordingthestrengthconditionofbeam:,Internalforcesonthecrosssectionofthebendingmember:,梁横截面上的剪应力,64Shearingstressonthecrosssectionofthebeam,推导切应力公式的方法:假设切应力的分布规律,然后根据平衡条件求出t,1.Shearingstressesonthecrosssectio
21、nofthebeamwithrectangularsection.矩形截面梁的切应力,Chapter6,Twoassumptions两个假设,与方向相同,沿宽度均匀分布,Shearingstressesareallparalleltotheshearingforce;剪应力与剪力平行,Shearingstressesareequalatthesamedistancetotheneutralaxis.矩中性轴等距离处,剪应力相等。,Chapter6,Takeaninfinitesimalsegmentofthebeam:,Fromthetheoryoftheconjugateshearingst
22、ress:,Chapter6,y以下的部分截面对中性轴的静矩,Chapter6,thestaticmomentofthepartsectionunderthepointyaboutneutralaxis.,Chapter6,Fortherectangularcrosssection,thestaticmomentofthepartsectionunderthepointyaboutneutralaxis.,or,Chapter6,Directionoft:Thesameasthatofshearingforceinthecrosssection.,Magnitudeoft:Distributi
23、onalongthewidthisuniformanddistributionalongtheheightisparabolic(抛物线).,中性轴上:,is1.5timesasmuchasthemeanshearingstress.,Chapter6,Distributionoftonthecrosssectionofthebeamwithrectangularsection,Chapter6,shearingstressintheweb腹板的切应力,2.Shearingstressesonthecrosssectionofthebeamwith-section.工字形截面梁的切应力,Met
24、hodtodeterminetheshearingstressisthesameasthatfortherectangularsection.,Calculationformulaoftheshearingstressisalso,flange,Chapter6,thestaticmomentofthepartsectionunderthepointyaboutneutralaxis.,when,Chapter6,切应力数值与腹板的切应力相比较小,并无实际意义,可忽略不计。,shearingstressinflanges翼缘的切应力,除了有平行于剪力的切应力分量外,还有与剪力垂直的切应力分量;
25、,腹板负担了截面上的绝大部分剪力,翼缘负担了截面上的大部分弯矩。,Chapter6,3.Shearingstressesonthecrosssectionofthebeamwithcircularsection.圆形截面梁的切应力,边缘各点的切应力与圆周相切;,切应力分布的特点:,Towassumptions:,y轴上各点的切应力沿y轴。,Chapter6,z,y,y,r,O,A,B,p,所以,对y可用矩形截面梁的公式,式中,b为AB的长度,Sz*为AB以外的面积对z轴的静矩。,Themaximumshearstressoccursattheneutralaxis:,Chapter6,Exam
26、ple8Forthebeamshown,themaximumtensilestressinthebeammax=50MPa,determinethevalueandlocationofthemaximumshearingstress.,(2)PlotMdiagram,Analysisofexternalforce,Solution:,Chapter6,(4)findIz,(3)thecentroidofthesection,z,C,(5)findP:,(6)find,Chapter6,(6)find,Chapter6,(7)find,Chapter6,正应力最大处,切应力为零,是单向拉压状态;
27、,弯曲时横截面上正应力和切应力的分布为:,切应力最大处,正应力为零,是纯剪切状态。,Chapter6,4.Comparethenormalstresswiththeshearingstressofthebeam,弯曲正应力与弯曲切应力比较,thebeamwithrectangularsection:,Chapter6,结论:在一般的细长非薄壁截面梁中,最大弯曲正应力远大于最大弯曲切应力,梁弯曲时的主要应力是正应力。,梁的强度主要是由正应力强度条件来控制,通常不需要校核剪切强度。只有在下列几种情况下需校核:,弯矩较小而剪力很大的情况:短粗梁,或在支座附近作用有较大的集中力;,Chapter6,经
28、铆接、焊接或胶合而成的梁,对铆钉、焊缝或胶合面等一般要进行剪切强度计算。,非标准的腹板较高且较薄的工字梁。,Chapter6,Example9ThecantileverbeaminFig.isfabricatedbygluingtogetherthree100mmby50mmplanksasshown.Thepermissibleshearstressintheglue=3.4MPa,determinePandthecorrespondingmaxandmax.,PlotMdiagram,(2)FindP:,Solution:,Chapter6,(3)findmax,(4)findmax,Ch
29、apter6,提高梁弯曲强度的措施,65Somemeasurementsimprovingthebendingstrengthofbeam,全世界每年有近百架桥梁因各种原因发生倒塌破坏,破坏的原因大多是因为强度失效。,提高梁强度具有实际意义,Chapter6,实心截面梁正应力与切应力比较:,Chapter6,因此,从上式可知,要提高梁的弯曲强度,可以有三个考虑:,提高材料的许用应力,Chapter6,1.Reasonablearrangementofthesupportsandloading合理安排梁的受力情况,改变加载方式,Chapter6,Compositebeam(组合梁),Second
30、arybeam副梁,Chapter6,Chapter6,改变支座,Chapter6,Chapter6,增加更多的支座,还可以收到更好的效果。,Chapter6,Chapter6,赣州古浮桥,浮桥又叫战桥,由于架设方便,打仗的时候,能保证部队快速通过江河。,Chapter6,南京长江二桥(斜拉桥,628米),Chapter6,由于固定支座架设困难,有时也影响通航,人类很聪明,就把固定支座从桥面下改到桥面上,就有了斜拉桥、悬索桥。,美国金门大桥,(悬索桥,1280米),Chapter6,合理地选择截面形状,2.Reasonableselectionofthecrosssection,这是工程实际中
31、形形色色的等截面梁,横截面形状对梁的强度有什么作用呢?,Chapter6,I=833.33cm4W=166.67cm3,I=1666.67cm4W=235.70cm3,I=795.77cm4W=141.05cm3,Chapter6,I=2069.01cm4W=273.33cm3,I=22780.0cm4W=1140cm3,I=1666.67cm4W=235.70cm3,Chapter6,Selectshapesofthesectionaccordingtomaterialproperties.根据材料的特性选择截面形状,宜选以对中性轴非对称的截面形状,且使离中性轴较远的边缘放在受压侧。,宜选对
32、中性轴对称的截面形状,塑性材料:,脆性材料:,Chapter6,Selectthebeamwithnon-constantsection,采用变截面梁,Considerablesavingsofmaterialmayberealizedbyusingbeamsofvariablecrosssection.,Chapter6,变截面梁,Thedesignofanon-prismaticbeamwillbeoptimumifthemodulusWofeverycrosssetion,这样,各个截面的大小将随截面上的弯矩而变化。,梁的各横截面上的最大正应力都等于材料的许用应力时,称为等强度梁。,Th
33、ebestistoselectanequal-strengthbeam.,Chapter6,satisfies:,厂房建筑中常用的鱼腹梁.fish-belliedbeam,变截面梁,Chapter6,汽车的叠板弹簧laminatedspring,变截面梁,Chapter6,日本岩大桥,变截面梁,Chapter6,海鸥,松树,长期的自然进化,使飞禽的翅膀,树杆也成为近似等强度梁。,Chapter6,机翼也是变截面梁,3.提高材料的力学性能,对于质量要求很高的战斗机,其材料的许用应力很大,自重尽可能地小。,广泛使用复合材料(CM),Chapter6,枕木增加支承;工字钢合理的截面形状;优质钢材提高
34、材料的力学性能;,综合应用了:,Chapter6,(1)利用一张A4复印纸,如何实现20cm的跨度,并且使其强度最高?,思考题:,(2)宽为4m的水沟上横跨一长6m的独木桥(如图)。两体重为P=800N的侦察兵欲过此沟。已知桥是等截面的,允许的最大弯矩为M=600Nm。试说明两人采取何种办法可以安全过沟。,若一人单独通过,则行至离沟边1m处时,跳板最大弯矩已达600Nm,不能再继续前进。,Chapter6,(支撑点可以认为是铰链约束),若两人同时上桥,一个在右侧外伸段距右端支座为x1处,另一个在桥上,行至离左端支座x2处:,其弯矩如图为:,欲要安全通过,要求,由此得,欲使上式恒成立,则,而考虑
35、到,Chapter6,所以,当一人立于右侧外伸段离右支座的距离为(0.5360.75)m之间时,另一人可安全通过。,通过跳板的人,立于左外伸段离左支座距离为(0.5360.75)m之间,另一人亦可安全通过。,单人爬行,Chapter6,Endofthischapter,Exerciselessonsaboutthestressesinbending,弯曲应力习题课,1)三关系推导弯曲正应力公式,2)弯曲剪应力公式,3)正应力强度条件和剪应力强度条件,塑性材料,脆性材料,Chapter6,Example10槽形铸铁外伸梁如图所示,已知:P=30kN,a=1m,h=200mm,y=53.2mm,I
36、Z=2.8107mm4,+=40MPa,-=170MPa;试用正应力强度条件校核梁的强度。,2)内力分析(M图),危险截面:,C和DB段的所有截面,1)外力分析,Solution:,Chapter6,C截面:,DB段:,3)强度校核:,故该梁的正应力强度满足。,Chapter6,Example11截面为T字形的铸铁梁如图所示,欲使梁内最大拉应力与最大压应力之比为1:3,试求水平翼缘的合理宽度b。,2)求b:,1)中性轴的位置:,(中性轴必过形心),Solution:,Chapter6,Example12把直径为d的钢丝绕在直径为2m的卷筒上,设钢丝的E=200GPa。若d=1mm,试计算钢丝中
37、产生的max。若钢丝的=200MPa,则该卷筒上能绕多粗的钢丝。,2)求d:,1)计算max:,Solution:,Chapter6,exit,Staticmoment,Productsofareasandcoordinates.,Appendix,thestaticmomentw.r.t.y-axis,units:,Whenanareapossessesanaxisofsymmetry,thestaticmomentwithrespecttothataxisiszero.,thestaticmomentw.r.t.y-axis,AppendixGeometricpropertiesofthe
38、section,附录I截面的几何性质,Centroid,Appendix,thestaticmomentoftheareamaybeexpressedastheproductsoftheareaandofthecoordinatesofitscentroid.,IfSy=0,Sz=0,Centroidandstaticmomentofthecompositearea,组合截面的静矩和形心,Summations:累加式,areamethod,Appendix,Example1Trytodeterminethecentroidofthefollowingfigure,Compositefigure
39、s:,Solution:,Thegraph-divisionandcoordinatesareshowninFig.,Solveitbythepositiveareamethod.,Appendix,Solveitbythenegativeareamethod.,Thegraph-divisionandcoordinatesareshowninFig.,C1(0,0)C2(5,5),Appendix,2.Momentsofinertia,productsofinertia,polarmoments惯性矩、惯性积、极惯性矩,Momentsofinertia惯性矩,(similartotherot
40、ationalmomentsofinertia),转动惯量,惯性矩是面积与它到轴的距离的平方之积。,Integralsofthedifferential-elementareamultipliedbythesquareofthedistancefromthereferenceaxis.,Iy、Iz分别称为截面面积对y轴和z轴的惯性矩.,Appendix,iy、iz:Theradiiofgyration(惯性半径)ofanareaw.r.ttheyandxaxis.,z,dz,Appendix,Themomentsofinertiaofcommongeometricshapes,Appendix
41、,Productsofinertia惯性积,面积与其到两轴距离之积,Theintegralofthedifferentialelementareamultipliedbytheproductofthedistancesfromtwoaxes.,Iyz称为截面面积对y轴和z轴的惯性积。,Appendix,Polar-momentsofinertia极惯性矩,Integralsofthedifferential-elementareamultipliedbythesquareofthedistancefromthepolarpoint.,是面积对极点的二次矩,3.Parallel-axisform
42、ula平行轴定理,以形心为原点,建立与原坐标轴平行的坐标轴如图,z,Appendix,4.Momentsofinertiaandproductsofinertiaofcompositefigures组合截面的惯性矩和惯性积,Appendix,DeterminethemomentsofinertiaofareasIandIIw.r.t.zC-axis,Example2Determinethemomentofinertiaoftheareawithrespecttothehorizontalcentroidalaxis.,DeterminethecentroidC,Solution:,Appendix,Therefore,exit,Appendix,运用有限元软件(ANSYSED版)模拟纯弯曲与横力弯曲时梁横截面上的正应力分布规律,Return,Chapter6,纯弯曲时梁横截面上正应力分布,Chapter6,Return,Goodbye,Thanks!,Page1665.5,5.16,5.17,Page1715.21,5.27,Page388I.2(c)、I.9(b),教材:刘鸿文编,材料力学(上、下册)高等教育出版社,2010年9月第5版。,第六章教材上的作业,Goodbye,Thanks!,